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The Elemantary Symplectic Witt Groups

The ‘addition’ operation ⊥: α ⊥ β =
(
α 0
0 β

)

The basic alternating matrix ψr ∈ E2r(Z):

ψ1 =
(

0 1
−1 0

)
, ψr = ψr−1 ⊥ ψ1
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Stable equivalence of alternating matrices w.r.t.
E(A) — the stable elementary subgroup of GL(A):

Let φ ∈M2r(A), η ∈M2s(A), then φ ' η iff

φ ⊥ ψs+t = εt(η ⊥ ψr+t)ε,

for some t ≥ 0, ε ∈ E2(r+s+t)(A).

' is an equivalence relation of the set of all matrices,

and also on the set of all alternating matrices of Pfaffian

one.
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One can show that ⊥ defines an addition on the

equivalence classes of alternating matrices of Pfaffian

one; and this is actually an abelian group WE(A) —

known as the Elementary Symplectic Witt group.

[ψr] is the identity element, and [φ]−1 = [φ−1].
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The Vaserstein Symbol V : Um3(A) −→WE(A):

[(a,b, c)]→


0 a b c

−a 0 −c′ b′
−b c′ 0 a′

−c −b′ −a′ 0


= V (a, b, c; a′, b′, c′)

aa′ + bb′ + cc′ = 1

Theorem: (Vaserstein) V is an isomorphism if Krull

dimension A is two.
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The Vaserstein rule: Addition of Vectors in
Dimension Two

Let xx′ + yy′ = 1 modulo (a), then

[(a, b, c)] ∗ [(a, x, y)] =
[(
a, (b, c)

(
x y

−y′ x′
))]
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Mennicke-Newmann Lemma for
Unimodular Vectors

Let v, w ∈ Umn(A), with d = dim(A) ≤ 2n− 3.

There there are ε1, ε2 ∈ En(A), such that

vε1 = (x, a2, . . . , an)

wε2 = (y, a2, . . . , an)

Moreover, in fact, one can also arrange that x+ y = 1.
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Counter-example in Dimension Three

Let

A = R[x, y, z, t]/(x2 + y2 + z2 + t2 − 1)

be the 3-dimensional co-ordinate ring of the real 3
sphere S3. In 1992, W. van der Kallen and I observed

that the Vaserstein symbol

V : Um3(A)/E3(A) −→WE(A)

is not injective. We did this by finding two vectors v, w

which were not in the same elementary orbit, but were
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equal in WE(A).

Let

v = (−t2 + x2 + y2 − z2,−2tx+ 2yz, 2ty + 2xz)
∈ Um3(A). (In fact v is completable: Consider the

three dimensional real vector space W of pure

quaternions. Let

q = x+ yi+ zj + tk.

Then q is a unit quaternion, and acts on W by

conjugation: p −→ qpq−1. It can be checked that v is

the first row of the matrix corresponding to this linear
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transformation. This row can be viewed as a map

h : S3 −→ S2, and is known as the Hopf map - as this

map generates π3(S2): Verify that (1, 0, 0) and

(−1, 0, 0) are regular values whose inverse images are

two circles which are simply linked in S3.

The second vector w is got from v by substituting −z
for z. Since we are reversing the orientation on S3, we

replace the Hopf map by its negative in π3(S2); which is

different. Hence [v] 6= [w]. However, using Vaserstein’s

Rule it was possible to show that V ([v]) = V ([w]).
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Example in Dimension Three

In the same article, W. van der Kallen and I showed that

if A is a three dimensional non-singular affine algebra

over a perfect C1 field k then the Vaserstein symbol is

an isomorphism.
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Van der Kallen’s Group Structure

Using L.N. Vaserstein’s group structure in dimension two

as an inductive step W. van der Kallen first defined a

group structure on Umd+1(A), when A had Krull

dimension d as follows: Choose p0 such that a0p0 = 1
modulo (a1, a2, . . . , ad). Define

[(a0, a1, . . . , ad)] ∗ [(b0, a1, . . . , ad)] =

[(a0(b0 + p0)− 1, (b0 + p0)a1, a2 . . . , ad)]
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Note: If dim(A) = 2, a0p0 + a1p1 + a2p2 = 1, then

(b0, a1)
(
a0 a1

−p1 p0

)
= (a0b0 − a1p1, b0a1 + p0a1)

= (a0(b0 + p0)− 1 + a2p2, (b0+ p0)a1)

He constructs the group structure by induction. If

modulo (ad),

[(a0,a1, . . . , ad−1)] ∗ [(b0, a1, . . . , ad−1)] =

[(c0, c1, . . . , cd−1)],
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then

[(a0, a1, . . . , ad)] ∗ [(b0, a1, . . . , ad)] =

[(c0, c1, . . . , cd−1, ad)]
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Weak Mennicke Symbols and Group
Structure on Orbits

If R = C(X) is the ring of continuous real valued

functions on a topological space X then every

unimodular vector v ∈ Umn(C(X)), n ≥ 2,

determines a map

arg(v) : X −→ R
n − {0} −→ Sn−1

(The first is by evaluation, and the second is the standard

homotopy equivalence.) We thus get an element

[arg(v)] of [X,Sn−1]. (As n ≥ 2, we may ignore base
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points.) Clearly, vectors in the same elementary orbit

define homotopic maps. Thus, we have a natural map

Umn(C(X))/En(C(X)) −→ [X,Sn−1] = πn−1(X).

Note that J.F. Adams has shown that Sn−1 is not a

H-space, unless n = 1, 2, 4, or 8. It is classically

known that this is equivalent to saying that there is no

suitable way to multiply the two projection maps

Sn−1 × Sn−1 in [Sn−1 × Sn−1, Sn−1]. However, under

suitable restrictions on the ‘dimension’ of X we may

expect to define a product.
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Henceforth, let X be a finite CW-complex of dimension

d ≥ 2. L.N. Vaserstein has shown that the ring C(X)
has stable dimension d. Now let n ≥ 3, so that Sn−1

will be atleast 1-connected. By the Suspension Theorem,

the suspension may

S : [X;Sn−1] −→ [SX;Sn]

is surjective if d ≤ 2(n− 2) + 1, and bijective if

d ≤ 2(n− 2). Moreover, we know that [SX, Sn] is an

abelian group. Hence, the orbit space has a structure of

an abelian group. It can also be shown that above map

is a universal weak Mennicke symbol (explained below).
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Inspired by the groups structures on orbits of unimodular

vectors in the case of rings of continuous functions

C(X) on a CW-complex X, W. van der Kallen was able

to obtain similar results algebraically, in the same range.

He also showed that the above map is an isomorphism of

groups in the topological situation when R = C(X) is

the ring of continuous real valued functions on a finite

CW-complex X of dimension d ≥ 2.

The main reason this was possible is a natural extension

of the Vaserstein Rule described earlier.
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Van der Kallen proves directly that there is a group

structure on the orbit space. This was done by a patient

study of the effect of minor variation in the choices, in

about 20 steps. The formulae are similar to the above

case of d+ 1-sized vectors.

He then gives a universal weak Mennicke symbol

interpretation of the group, which we briefly mention

next.
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Weak Mennicke Symbols

A weak Mennicke symbol (of order n) over R is a map

wms : Umn(R)/En(R) −→ G,

a group G, such that, whenever (q, v2, . . . , vn),

(1 + q, v2, . . . , vn) are unimodular, and r(1 + q) = q

modulo (v2, . . . , vn), one has

wms(q, v2, . . . , vn) =

wms(r, v2, . . . , vn)wms(1 + q, v2, . . . , vn).

In 1989, W. van der Kallen showed that, if n ≥ 3, and
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sdim(R) ≤ 2n− 4, then the universal weak Mennicke

symbol
wms : Umn(R)/En(R) −→WMSn(R)

is bijective. He also showed that the surjectivity implied

that the latter had an abelian group structure.

Remark. To prove the bijectivity, it was necessary for him

to actually prove directly that there is a group structure

on the orbit space.

Remark. Recently, following the important work of

S.M.Bhatwadekar-Raja Sridharan, who constructed a

homomorphism from an orbit set of unimodular rows



21

to an Euler class group, W. van der Kallen was able to

show that the multiplication in the orbit spaces can be

succinctly described as follows:

[(a0(1− a0), a1, . . . , an)] =

[(a0, a1, . . . , an)] ∗ [(1− a0, a1, . . . , an)]

(Since one can arrange that the above situation via

Mennicke-Newmann lemma, this describes the group

structure completely.)

Remark. The expectation is natural in K-theory!
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The Suslin Matrices Sr(v, w)

The construction of the Suslin matrices Sr(v, w) is

possible once we have two row vectors v, w. It becomes

more interesting if their dot product vwt = 1. (The

vectors are then automatically unimodular vectors.) A.

Suslin’s inductive definition: Let

v = (a0, a1, . . . , ar) = (a0, v1),

with

v1 = (a1, . . . , ar), w = (b0, b1, . . . , br) = (b0, w1),

with w1 = (b1, . . . , br).
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Set S0(v, w) = a0, and set

Sr(v, w) =
(

a0I2r−1 Sr−1(v1, w1)
−Sr−1(w1, v1)t b0I2r−1

)
.

1. Sr(v, w)Sr(w, v)t = (v.wt)I2r

= Sr(w, v)tSr(v, w),

2. detSr(v, w) = (v.wt)2r−1
, for r ≥ 1.

The Suslin matrices were introduced by A. Suslin to

show that a unimodular vector of the form

(a0, a1, a
2
2, . . . , a

r
r) could be completed to an invertible

matrix.
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Example



a0 0 0 0 a1 0 a2 a3

0 a0 0 0 0 a1 −b3 b2

0 0 a0 0 −b2 a3 b1 0
0 0 0 a0 −b3 −a2 0 b1

−b1 0 a2 a3 b0 0 0 0
0 −b1 −b3 b2 0 b0 0 0
−b2 a3 0 −a1 0 0 b0 0
−b3 −a2 0 −a1 0 0 0 b0


S3((a0, a1, a2, a3), (b0, b1, b2, b3))
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The Special and Elementary Unimodular
Vector Groups

We define a new group which promises to throw light on

problems regarding completions of unimodular vectors,

not necessarily of above type.

Definition. The Special Unimodular Vector group
SUmr(R) is the subgroup of Sl2r(R) generated by

the Suslin matrices Sr(v, w), as v varies in Umr+1(R),

and for some w with v.wt = 1.

The Elementary Unimodular Vector group EUmr(R)
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is the subgroup of SUmr+1(R) generated by the Suslin

matrices Sr(e1ε, e1ε
t−1

), for ε ∈ Er+1(R).

Definition. For 1 ≤ i ≤ r, λ ∈ R,

Er(ei)(λ) = Sr(e1 + λei+1, e1),

Er(e∗i )(λ) = Sr(e1, e1 + λei+1)
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Examples:


1 0 λ 0
0 1 0 0
0 0 1 0
0 −λ 0 1




1 0 0 0
0 1 0 λ

−λ 0 1 0
0 0 0 1


E2(e2)(λ) E2(e∗2)(λ)
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E3(e∗3)(λ)bot =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −λ 0 0 1 0 0
0 0 0 0 0 0 1 0
−λ 0 0 0 0 0 0 1


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It seems natural to expect that the elementary

unimodular generators E(ei)(λ), 1 ≤ i ≤ r + 1,

λ ∈ R, should suffices to generate EUmr(R).

However, this is not the case as a simple example will

show: Note that elementary generators of type

E2(ep)(µ), E2(eq)(ν), are (elementary) symplectic.

However, S2(e2 + e1, e2) is not symplectic, and so

cannot be written as a product of these generators.

Definition. For 2 ≤ i ≤ r + 1, λ ∈ R, let

Er(ei1)(λ) = Sr(ei + λe1, ei),

Er(e∗i1)(λ) = Sr(ei, ei + λe1).
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Example:


λ 0 1 0
0 λ 0 1
−1 0 0 0
0 −1 0 0




0 0 1 0
0 0 0 1
−1 0 λ 0
0 −1 0 λ


E2(e12)(λ) E2(e∗12)(λ)
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One has the structure theorem for the Elementary

Unimodular vector group EUmr(R):

Theorem. [(Selby Jose and Ravi Rao)] Let R be a

commutative ring in which 2 is invertible. Then

EUmr(R) is generated by elements of the form

E(ei)(w), E(e∗j)(x), E(e1i)(y), E(e∗1i)(z), for

w, x, y, z ∈ R, 1 ≤ i, j ≤ r + 1.

�
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A Witt Group Symbol on the Orbit Space

We shall show that it is possible to define a group

structure on the orbit space Umn(A)/En(A),

n ≥ 3, d = dim(A) ≤ (2n− 3), which has a Witt

group structure, similar to the one which Vaserstein did

when d = 2, n = 3. However, we need to assume, for

simplicity, that −1 is a square in the ring. In particular,

under the additional hypothesis, we can recover van der

Kallen’s theorem, as well as Vaserstein’s theorem.

The idea of the proof in a nutshell is to imitate the

Vaserstein construction of WE(R), and to construct a
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new Witt group WEUm(R), which we call the

Elementary Unimodular Witt group. The (equivalence

class) of the Suslin matrices will offer the natural access

to the orbit space into this Witt group. The fact that the

addition of two vectors can be defined will be due to the

Mennicke-Newmann lemma. It will be possible to reach

the situation described in this lemma due to the

analogue of the famous lemma of Vaserstein that

elementary orbit equals elementary symplectic orbit.
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Theorem. The Vaserstein-Suslin symbol

S : Umn(R)/En(R) −→ WEUm(R)

[v] −→ [Sn(v, w)] ∈WEUm(R)

is an isomorphism, for n ≥ (d+ 3)/2}, d being

the stable dimension of R. Moreover, if

n ≥ max{3, d/2 + 2}, then this is the universal weak

Mennicke symbol.
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Cohn Orbits Versus Elementary Orbits

Definition. Let

v=(a0,a1, . . . ,ar),

w=(b0, b1, . . . , br)

with v.wt = 1. We say that the vector

v∗ = vCij(λ) =

(a0, . . . , ai + λbj, . . . , aj − λbi, . . . , ar),

for 0 ≤ i 6= j ≤ r, is a Cohn transform of v w.r.t. the

vector w, with v.wt = 1.
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The Cohn orbit of a vector v is the vectors got by a

sequence of Cohn transforms of v w.r.t. suitable vectors

w with v.wt = 1 or to a Cohn transform of v.
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We show that the Cohn orbit equals the elementary orbit:

{(a, b, c); (a′, b′, c′)} C02(−λ)−→ {(a− λc′, b, c+ λa′); (a′, b′, c′)}

C12(−1)−→ {(a− λc′, b, c+ λa′); (a′, b′ − (c+ λa′), c′ + b)}

C02(λ)−→ {(a− λc′ + λ(c′ +b), b, (c+ λa′)− λc′)};

{(a′, b′ − (c+ λa′), c′ + b)}
= {(a+ λb, b, c); (a′, b′ − c− λa′, c′ + b)}

C12(1)−→ {(a+ λb, b, c); (a′, b′ − λa′, c′)}
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Key Lemma

Let v = (a0, a1, . . . , ar), w = (b0, b1, . . . , br), with

vwt = 1. Then, for 2 ≤ i ≤ r + 1, r ≥ 2,

Sr(e1, e1 + λei)topSr(v, w)Sr(e1, e1 + λei)bot =

Sr(vEi1(−λ), wE1i(λ)

Sr(e1 + λei, e1)botSr(v, w)Sr(e1 + λei, e1)top =

Sr(vE1i(λ), wEi1(−λ)).

(The case when r = 1 is left to the reader.)
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Moreover, if 1 ≤ i ≤ r, then

Sr(e1 + λei+1, e1)topSr(v, w)Sr(e1 + λei+1, e1)bot =

Sr(vC0i(−λ), w)

Sr(e1, e1 + λei+1)botSr(v, w)Sr(e1, e1 + λei+1)top =

Sr(v, wC0i(−λ))
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Key Lemma is an Action

Lemma. Let

J̃r =


Jr if r even

(
0 Jr−1

Jr−1 0

)
if r odd.

Then for c = ei, e
∗
i , 1 ≤ i ≤ r, λ ∈ R,

J̃rE(c)(λ)tb
T
J̃−1
r =

{
E(c)(λ)bt if r even

E(c)(λ)tb if r odd.
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Corollary. If r is even, EUmr(R)tb acts on

S = {Sr(v, w)|Sr(v, w) ∈ SUmr(R)}.

For any r, EUmr(R) acts on S.

Proof. Forα ∈ EUmr(R)tb (respectivelyEUmr(R)),

the action is given by αSr(v, w)(J̃rαT J̃−1
r ). 2

Remark. 1. It is not too difficult to show even when r is

odd that EUmr(R)tb acts on S.

2. Since EUmr(R) ⊂ EUmr(R)tb. Hence, via the

above remark, EUmr(R) acts on the set S as above
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Notation. We will write α∗ for J̃rα
tJ̃−1
r , when r is

even, and the appropriate matrix when r is odd to ensure

that one gets an action on S.

Examples:

For 0 < i 6= j ≤ r + 1, we have for λ = −2xy. If

α = {[E(ei)(x), E(ej)(y)]},

then α∗ = α−1, and

Sr(vCij(λ), w) = αSr(v, w)α−1
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If

β = {[E(e∗i )(x), E(e∗j)(y)]},
then β∗ = β−1, and

Sr(v, wCij(λ)) = βSr(v, w)β−1

If

γ = {[E(ej−1)(x), E(e∗i−1)(y)]},
then γ∗ = γ−1, and

Sr(vEij(λ), wEji(−λ)) = γSr(v, w)γ−1
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Central Positioning

Definition. Let α, β ∈ Gl2r(R). We shall think of

them as 4× 4 block matrices

α =
(
α11 α12

α21 α22

)
, β =

(
β11 β12

β12 β22

)
Define

α� β =


α11 0 0 α12

0 β11 β12 0
0 β21 β22 0
α21 0 0 α22

 ∈ Gl4r(R)
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We can loosely say that β is in the center of α� β.

For example, note that the Suslin matrix Sr(v, w) has a

Sr−1(v∗, w∗) in its center. (Of course, the Suslin matrix

Sr(v, w) is not exactly got by centering.)
a0 0 a1 a2

0 a0 −b2 b1

−b1 a2 b0 0
−b2 −a1 0 b0


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Equivalence Relation on the Suslin Matrices

We shall always regard α ∈ Sl2r(R) to be sitting inside

Sl2r+1(R) via centering, i.e. α should be replaced by

(I � α).

Given

Sr(v, w), Sr(v∗, w∗),

we say that they are equivalent

Sr(v, w) ' Sr(v∗, w∗)
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if there exist a telescope of elementary unimodular

matrices

ε1 ∈ EUmr(R), ε2 ∈ EUmr+1(R),

and elementary matrices

ε, ε∗ ∈ Er+1(R)

such that

(ε2ε1)(Sr(e1ε, e1ε
t−1

)� Sr(v, w))(ε2ε1)∗ =

Sr(e1ε
∗, e1ε

∗t−1)� Sr(v∗, w∗))
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Remark. One can have a more general definition in

which the telescope will have more matrices. This is

needed in some applications.

It can be verified that ' is an equivalence relation on the

set of all Suslin matrices of type r. Transitivity is

non-trivial, and needs the following type of observation
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An Analogue of Vaserstein Lemma

Given a Suslin matrix Sr(v, w), and a θ ∈ Er+1(R),

there exists an elementary unimodular matrix

ε ∈ EUmr(R)tb such that

εSr(v, w)ε∗ = Sr(vθ, wθt
−1

),

with εε∗ = I.

This lemma may be regarded as the equivalent statement

to the famous Vaserstein lemma which states that

e1E2n(A) = e1ESp2n(A).
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Injectivity of the Vaserstein-Suslin Symbol

If one has I =

(ε2ε1)(Sr(e1ε, e1ε
t−1

)� Sr(v, w))(ε1ε2)∗.

Then multiplying by ε2
−1 gives

(Sr(e1ε, e1ε
t−1

)� Sr(ṽ, w̃)) = Sr+1(e1θ, e1θ
t−1

),

for some elementary θ. (Here ṽ is in the elementary orbit

of v, etc.)

Note that the left hand side is a matrix got by centering

two matrices, and hence so is the right hand side.
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Moreover, a Suslin matrix which is got by centering is

essentially of the form

Sr(x, y)� Sr(x̃, ỹ)−1,

where x̃ is in the elementary orbit of x, etc. Since

Sr(x, y) ∈ EUmr(R), the result follows.
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The Elementary Unimodular Witt Group
WEUm(R)

One can show that � defines an addition on the

equivalence classes of Suslin matrices of size 2r; and this

is actually an abelian group WEUm(R) — known as the

Elementary Unimodular Witt Group.

Once we establish the closure of the addition operation,

it is easy to show that � is associative. We have I as

the identity element, and

[Sr(v, w)]−1 = [Sr(v, w)−1] = [Sr(w, v)t].
It is also easy to show that � is commutative.
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Why is our group and the van der Kallen group structure

isomorphic? The reason is that we can show that the

product ∗ in both the groups is the obvious expected

K-theoretic product:

(a0(1− a0), a1, . . . , an)] =

[(a0, a1, . . . , an)] ∗ [[(1− a0), a1, . . . , an)]

Addition is by central placement. The surjectivity of the

Suslin symbol will follow if one can manipulate with the

‘sum’ of two Suslin matrices by means of Elementary

unimodular matrices and succeed in getting a single

Suslin matrix in the center.



54



a0 0 0 0 0 0 a′2 −a3

0 a0 0 0 0 0 b3 b′2
0 0 a0 0 −a2 −a3 0 0
0 0 0 a0 b3 −b2 0 0
0 0 b2 −a3 b0 0 0 0
0 0 b3 a2 0 b0 0 0
−b′2 −a3 0 0 0 0 b0 0
b3 −a′2 0 0 0 0 0 b0


S2[a0,−a2,−a3; b0,−b2,−b3]�S2[a0, a

′
2,−a3; b0, b

′
2,−b3]

Let us call it α
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Remark. It is due to the Mennicke-Newmann Lemma

that we are able to consider starting with the above

matrix. But we have to ensure first that we can reduce to

this case. This is done via the analogue of the lemma of

Vaserstein that

vE2n(A) = vEsp2n(φ),

for any alternating matrix φ ∈ Sl2n(A) of Pffafian one.
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An Analogue of Vaserstein Lemma

Given two Suslin matrces Sr(v, w), Sr(v∗, w∗), with

v /∈ v∗Er+1(R), and a θ ∈ Er+1(R), there exists an

elementary unimodular matrix ε ∈ EUmr(R)tb such

that

εSr(v, w)(ε)∗ = Sr(vθ, wθt
−1

),

with εSr(v∗, w∗)(ε)∗ = Sr(v∗, w∗).

Remark. Our proof of this needs an application of the

Local Global Principle for EUmr(R[X]) to reduce it to

the previous version of the lemma when v∗ = e1 = w∗.
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α1 = ε1α(ε1)∗

ε1 = [E3(e2)(1)top, E3(e∗3)(−1)bot]×
[E3(e∗2)(1)top, E3(e1)(−1)bot]

α2 = ε2α1(ε2)∗

ε2 = [E3(e∗2)(a2)top, E3(e∗1)(−1)bot]

α3 = ε3α2(ε3)∗

ε3 = [E3(e2)(a′2)
top, E3(e∗1)(−1)bot]

α4 = ε4α3(ε4)∗

ε4 = [E3(e3)(a3)top, E3(e∗1)(1)bot]
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α5 = ε5α4(ε5)∗

ε5 = E3(e∗1)(−b0)bot

α6 = ε6α5(ε6)∗

ε6 = E3(e∗3)(b3)top, E3(e∗1)(1)bot]

α7 = ε7α6(ε7)∗

ε7 = [E3(e∗2)(1)top, E3(e1)(−1)bot]×
[E3(e2)(1)top, E3(e∗1)(−1)bot]×
[E3(e∗2)(1)top, E3(e1)(−1)bot]

α8 = ε8α1(ε8)∗

ε8 = E3(e∗2)(a0)top
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Unimodular 2× n-Vectors

We briefly discuss a second application — we still have

to work out the details for it. Does the orbit set of

unimodular 2× n matrices (i.e. right invertible 2× n
matrices)

Um2,n(R)/En(R)

have a group structure? Size restrictions are due to:
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Mennicke Newmann Lemma for
Unimodular 2× n-Vectors

Let n ≥ 4, and d ≤ 2n− 5. Let two elements of

Um2,n(R)/En(R) be given. Then we may choose

representatives of the form(
a b y11 y12 z11 · · · z1n−4

g −a y21 y22 z21 · · · z2n−4

)
,

(
1− a −b y11 y12 z11 · · · z1n−4

−g 1 + a y21 y22 z21 · · · z2n−4

)
,

respectively.
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Remark. It is easy to see that if

X =
(
a b

g −a

)
, Y =

(
y11 y12

y21 y22

)
,

Z =
(
z11 · · · z1n−4 z21 · · · z2n−4

)
,

then X(I −X,Y, Z) is a unimodular 2× n matrix.

Naturally, we expect it to be the product of the above

two!

There is a very natural way to approach this problem

based on the earlier theory.
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Let (v1, w1), (v2, w2), (v3, w3), (v4, w4) be four pairs

of vectors with vi.w
t
i = 1, for all 1 ≤ i ≤ 4., and with

∀i, (
vi
wi

)
∈ Um2n(A).

Consider the Suslin matrix Sr(v, w) corresponding to

the ‘cocatenated vectors’

v = (v1, v2, v3, v4), w = (w1, w2, w3, w4)

Of course, Sr(v, w) is elementary unimodular, so we

cannot hope to get much if we study its class in

WEUm(R).
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However, we can study its class in a modified Witt

group. The fact that we are dealing with orbit space of

2× n matrices by En(R) places a natural restriction on

us. This allows us to define a natural sequence of

subgroups ˜EUmn(R) of EUmn(R), ∀ n. We shall

study the class of Sr(v, w) w.r.t this subgroup.

The injectivity of the natural map

Um2n(R)/En(R) −→W
ẼUm

(R)

is not difficult to show.



64

The surjectivity part is the key point. The above version

of the Mennicke-Newmann lemma should allow us to

conclude that the class of the � sum can be cut down in

size, as before. However, the sizes of what we have to

deal with is just too large to physically work out - the

minimum size is 216. So we have to work it out more

efficiently. The combinatorial aspect of the Key Lemma
gives a way out, and there is a method in which we have

to work out that the class of the � sum can be cut down

working with 16× 16 matrices essentially.
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Completing Unimodular Polynomial Vectors
of Size ≥ d

2 + 2 over R[X]

One expects to prove a M. Karoubi type theorem for the

Elementary Unimodular Witt group, viz.

WEUm(R[X]) 'WEUm(R), if
1

2
∈ R.

Moreover, as is known for the Elementary symplectic

Witt group, one expects that the Elementary Unimodular

Witt group is also k-divisible if 1
k
∈ R.
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Hence, one hopes to derive from this that

Umr(R[X] = e1Slr(R[X]) if
1

r!
∈ R,

for r ≥ {d2 + 2}, as was shown by M. Roitman in

positive characteristics.
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

a0 0 0 0 −1 0 a′2 −a3

0 a0 0 0 0 −λ b3 b′2
0 0 a0 0 −a2 −a3 0 0
0 0 0 a0 b3 −b2 0 0
0 0 b2 −a3 b0 0 0 0
0 0 b3 a2 0 b0 0 0
−b′2 −a3 λ 0 0 0 b0 0
b3 −a′2 0 1 0 0 0 b0


α1 = ε1α(ε1)∗

ε1 = [E3(e2)(1)t, E3(e∗3)(−1)b][E3(e∗2)(1)t,E3(e1)(−1)b]
t denotes top, and b denotes bot above.
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

a0 0 0 0 −1 0 a′2 −a3

0 a0 0 0 0 −λ b3 0
0 0 a0 0 0 −a3 −a2a

′
2 0

0 0 0 a0 b3 −b2 0 −a2b2

a2b2 0 b2 −a3 b0 0 0 0
0 a2a

′
2 b3 0 0 b0 0 0

0 −a3 λ 0 0 0 b0 0
b3 −a′2 0 1 0 0 0 b0


α2 = ε2α1(ε2)∗

ε2 = [E3(e∗2)(a2)top, E3(e∗1)(−1)bot]
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

a0 0 0 0 −1 0 0 −a3

0 a0 0 0 0 −λ b3 0
0 0 a0 0 0 −a3 −a2a

′
2 0

0 0 0 a0 b3 0 0 −a2b2

a2b2 0 0 −a3 b0 0 0 0
0 a2a

′
2 b3 0 0 b0 0 0

0 −a3 λ 0 0 0 b0 0
b3 0 0 1 0 0 0 b0


α3 = ε3α2(ε3)∗

ε3 = [E3(e2)(a′2)
top, E3(e∗1)(−1)bot]



70

a0 0 0 0 −1 0 0 0
0 a0 0 0 0 −λ b3 0
0 0 a0 0 0 λ′a3 x 0
0 0 0 a0 b3 0 0 −x′
x′ 0 0 0 b0 0 0 0
0 −x b3 0 0 b0 0 0
0 −λ′a3 λ 0 0 0 b0 0
b3 0 0 1 0 0 0 b0


λ′ = (λ− 1);x = −a2a

′
2 − a3b3, x

′ = (1− a0b0)
α4 = ε4α3(ε4)∗

ε4 = [E3(e3)(a3)top, E3(e∗1)(1)bot]
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

a0 0 0 0 −1 0 0 0
0 a0 0 0 0 −λ b3 0
0 0 a0 0 0 λ′a3 y 0
0 0 0 a0 b3 0 0 −1
1 0 0 0 0 0 0 0
0 −y b3 0 0 −λ′b0 0 0
0 −λ′a3 λ 0 0 0 −λ′b0 0
b3 0 0 1 0 0 0 0


y = x− a0b0

α5 = ε5α4(ε5)∗

ε5 = E3(e∗1)(−b0)bot
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

a0 0 0 0 −1 0 0 0
0 a0 0 0 0 −λ −λ′b3 0
0 0 a0 0 0 λ′a3 y∗ 0
0 0 0 a0 0 0 0 −1
1 0 0 0 0 0 0 0
0 −y∗ −λ′b3 0 0 −λ′b0 0 0
0 λ′a3 λ 0 0 0 −λ′b0 0
0 0 0 1 0 0 0 0


α6 = ε6α5(ε6)∗

ε6 = E3(e∗3)(b3)top, E3(e∗1)(1)bot]



73

a0 0 0 0 0 0 1 0
0 a0 0 a0 0 0 0 1
0 0 a0 0 y∗ λ′a3 0 0
0 0 0 a0 −λ′b3 −λ 0 0
0 0 λ λ′a3 −λ′b0 0 0 0
0 0 −λ′b3 −y∗ 0 −λ∗b0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0


α7 = ε7α6(ε7)∗

ε7 = [E3(e∗2)(1)top, E3(e1)(−1)bot]
[E3(e2)(1)t, E3(e∗1)(−1)b][E3(e∗2)(1)t, E3(e1)(−1)b]

t denotes top and b denotes bot above.


