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The Elemantary Symplectic Witt Groups

The ‘addition’ operation 1L: a« L B = (CS g)

The basic alternating matrix v, € FE5,.(Z):

1= (_01 é) e =y Lty



Stable equivalence of alternating matrices w.r.t.
E(A) — the stable elementary subgroup of GL(A):

Let ¢ € Mo,.(A), 1 € Mos(A), then ¢ =~ 7 iff

¢ L oy =e'(n L Pryv)e,
for some t > 0, € € Ey(p1541)(A).

~ |s an equivalence relation of the set of all matrices,
and also on the set of all alternating matrices of Pfaffian
one.



One can show that _L defines an addition on the
equivalence classes of alternating matrices of Pfaffian
one; and this is actually an abelian group Wg(A) —
known as the Elementary Symplectic Witt group.

1),] is the identity element, and [¢]™! = [¢71].




The Vaserstein Symbol V : Umg(A) — WEg(A):

/O a b c\
—a 0 - b’
b 0

\ c —b —d ()/

=V(a,b,c;a’,b', ")

(a,b,c)]—

aa’ +bb' +cc =1

Theorem: (Vaserstein) V' is an isomorphism if Krull
dimension A is two.



The Vaserstein rule: Addition of Vectors in
Dimension Two

Let xx’ + yy’ = 1 modulo (a), then

(@,6,0)] (@2 )] = (. 0.0) (2, 2))]

_y/ 7’



Mennicke-Newmann Lemma for
Unimodular Vectors

Let v, w € Um,(A), with d = dim(A) < 2n — 3.
There there are e1,e5 € E,,(A), such that

ve, = (¢, ag,... 5 ap)

We2 — (yv A2y ... 9an)

Moreover, in fact, one can also arrange that * + y = 1.



Counter-example in Dimension Three

Let
A =Rz, y, 2, t] /(2" + y* + 2° + t* — 1)

be the 3-dimensional co-ordinate ring of the real 3
sphere S2. In 1992, W. van der Kallen and | observed

that the Vaserstein symbol
V :Ums(A)/E3(A) — Wg(A)

Is not injective. We did this by finding two vectors v, w
which were not in the same elementary orbit, but were



equal in Wg(A).

et

v=(—t*+ x? + y* — 2°, —2tx + 2yz, 2ty + 2x2)
€ Umg(A). (In fact v is completable: Consider the
three dimensional real vector space W of pure
quaternions. Let

q=x+ yr + z3 + tk.

Then q i1s a unit quaternion, and acts on W by
conjugation: p —— gpg~!. It can be checked that v is
the first row of the matrix corresponding to this linear



transformation. This row can be viewed as a map
h:S% — S? and is known as the Hopf map - as this
map generates m3(S?): Verify that (1, 0,0) and
(—1,0,0) are regular values whose inverse images are
two circles which are simply linked in S?.

The second vector w is got from v by substituting —z
for z. Since we are reversing the orientation on S2, we
replace the Hopf map by its negative in w3(S?); which is
different. Hence [v] # [w]. However, using Vaserstein's
Rule it was possible to show that V' ([v]) = V ([w]).
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Example in Dimension Three

In the same article, W. van der Kallen and | showed that
if A is a three dimensional non-singular affine algebra
over a perfect C] field k then the Vaserstein symbol is

an isomorphism.



Van der Kallen’s Group Structure

Using L.N. Vaserstein's group structure in dimension two
as an inductive step W. van der Kallen first defined a

group structure on Umg,1(A), when A had Krull
dimension d as follows: Choose pg such that agpg = 1

modulo (ai, asg, ... ,aq). Define

[(agya1y... ,aq)] * [(bo,a1,... ,aq)] =

[(ao(bo + po) — 1, (bo + po)ai,az... ,aq)]

11



Note: If dim(A) = 2, agpo + a1p1 + azp2 = 1, then

ag Qi
—P1 Do
= (ao(bo + po) — 1 + azp2, (bo+ po)ay)

(bo, a1) (

> = (aobop — a1pi1, boa; + poa)
He constructs the group structure by induction. If
modulo (ag),

[(a07a19 hoo g ad—l)] * [(b09 A1y ey ad—l)] —

[(607 Clgeee Cd—l)]v

12



then

[(ag, aq, ...

saq)] * [(bo, @y, ...

) ad)] —

[(C(), Cle e

s Cd—15 ad)]

13
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Weak Mennicke Symbols and Group
Structure on Orbits

If R = C'(X) is the ring of continuous real valued
functions on a topological space X then every
unimodular vector v € Um,,(C(X)),n > 2,

determines a map
arg(v) : X — R" — {0} — S

(The first is by evaluation, and the second is the standard
homotopy equivalence.) We thus get an element
[arg(v)] of [ X, S™!]. (As n > 2, we may ignore base
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points.) Clearly, vectors in the same elementary orbit
define homotopic maps. Thus, we have a natural map

Umn,(C(X))/En(C(X)) — [X, 8" = m""H(X).

Note that J.F. Adams has shown that S™ ! is not a

H -space, unless n = 1, 2,4, or 8. It is classically
known that this is equivalent to saying that there is no
suitable way to multiply the two projection maps

S™~1 x 8" 1in [S"~! x S™~1, 8™ 1]. However, under
suitable restrictions on the ‘dimension’ of X we may
expect to define a product.



16

Henceforth, let X be a finite CW-complex of dimension
d > 2. L.N. Vaserstein has shown that the ring C'(X)
has stable dimension d. Now let n > 3, so that S™1
will be atleast 1-connected. By the Suspension Theorem,

the suspension may
S:[X;8" ] — [SX;8"]

is surjective if d < 2(n — 2) 4+ 1, and bijective if

d < 2(n — 2). Moreover, we know that [SX, S™] is an
abelian group. Hence, the orbit space has a structure of
an abelian group. It can also be shown that above map

is a universal weak Mennicke symbol (explained below).



Inspired by the groups structures on orbits of unimodular
vectors in the case of rings of continuous functions
C'(X) on a CW-complex X, W. van der Kallen was able
to obtain similar results algebraically, in the same range.
He also showed that the above map is an isomorphism of
groups in the topological situation when R = C'(X) is
the ring of continuous real valued functions on a finite
CW-complex X of dimension d > 2.

The main reason this was possible is a natural extension
of the Vaserstein Rule described earlier.

17



Van der Kallen proves directly that there is a group
structure on the orbit space. This was done by a patient
study of the effect of minor variation in the choices, in
about 20 steps. The formulae are similar to the above
case of d + 1-sized vectors.

He then gives a universal weak Mennicke symbol

interpretation of the group, which we briefly mention
next.

18



Weak Mennicke Symbols

A weak Mennicke symbol (of order n) over R is a map
wms : Um,(R)/E,(R) — G,

a group G, such that, whenever (q,va, ... ,v,),
(1+ q,v2,... ,vy,) are unimodular, and (1 4+ q) = ¢q
modulo (vz,...,v,), one has

wms(q, Vo, ... yVy) =

wms(r, vz, ... ,V)wms(l + q,v2y... ,U,).

In 1989, W. van der Kallen showed that, if n > 3, and

19



sdim(R) < 2n — 4, then the universal weak Mennicke

symbol
wms : Um,(R)/E,(R) — WMS,(R)

Is bijective. He also showed that the surjectivity implied
that the latter had an abelian group structure.

Remark. To prove the bijectivity, it was necessary for him
to actually prove directly that there is a group structure
on the orbit space.

Remark. Recently, following the important work of
S.M.Bhatwadekar-Raja Sridharan, who constructed a
homomorphism from an orbit set of unimodular rows

20



to an Euler class group, W. van der Kallen was able to
show that the multiplication in the orbit spaces can be
succinctly described as follows:

[((1,0(1 — ao), A1g oo ,an)] —
[(ags @1y-.. san)] * [(1 — ag,a,... ,ay)]
(Since one can arrange that the above situation via

Mennicke-Newmann lemma, this describes the group
structure completely.)

Remark. The expectation is natural in K-theory!
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The Suslin Matrices S,.(v, w)

The construction of the Suslin matrices S,.(v, w) is
possible once we have two row vectors v, w. It becomes
more interesting if their dot product vw® = 1. (The
vectors are then automatically unimodular vectors.) A.
Suslin’s inductive definition: Let

U — (aOaalv .« o va’r) — (UJOa”l)'

V1 = (al,. . o ,ar),w — (b(), bl,. e o ,br) — (b(), ’UJl),

with wy = (b1, ... ,b,).

22
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Set So(v, w) = ag, and set

S,(v,w) = ( @olyr— Sr_l(vl’w1)> :

—Sr_l(wl, ’Ul)t b()I2r—1
1. S, (v,w)S,(w,v) = (v.wh)lyr
= S, (w,v)'S, (v, w),

2. det S, (v, w) = (v.w?)? ', forr > 1.

The Suslin matrices were introduced by A. Suslin to

show that a unimodular vector of the form

(ag, a1, a3, ... ,a’) could be completed to an invertible

matrix.



53(((10, a, az, a3)7 (bOa b1, ba, b3))
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The Special and Elementary Unimodular
Vector Groups

We define a new group which promises to throw light on

problems regarding completions of unimodular vectors,
not necessarily of above type.

Definition. The Special Unimodular Vector group
SUm,(R) is the subgroup of Slor(R) generated by

the Suslin matrices S, (v, w), as v varies in Um, 1 (R),
and for some w with v.w' = 1.

The Elementary Unimodular Vector group EUm,.(R)

25



is the subgroup of SUm,.,1(R) generated by the Suslin
matrices S,(eie, e1et” '), fore € E,11(R).

Definition. For1 <1< r, A € R,

E.(e;)(A) = Sr(e1+ Aeity,er),
Er(e;k)()\) — Sr(ela e, + Aefi—l—l)

26
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Examples:

o <
o O
el

-~ O

—A 010
\O 001/

o O
< O

S o

- O

1 0

0O O

\O —)\01/

E>(e3)(A)

Es(e2)(A)
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0 0 0000 O)

[ 1

O 1 0 00O0O0O
O 01 00O0O0O

O 0 O

1 0000

0 00 01000
0 0-X00100
0 00 00010

\-A 0 0 0000 1)

Es(e3)(A)™" =
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It seems natural to expect that the elementary
unimodular generators E(e;)(N), 1 <1< r 41,

A € R, should suffices to generate EUmM,.(R).
However, this is not the case as a simple example will
show: Note that elementary generators of type
Es(ep) (), E2(eq)(v), are (elementary) symplectic.
However, Sa(es + eq, e2) is not symplectic, and so
cannot be written as a product of these generators.

Definition. For2<:1<r+1, A€ R, let

Er(eil)(A) — Sr(ei + A613 ei)a
E.(e;)(N) Sr(ei, e; + Xeyp).
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Example:

—10)\/

\O

S o
-~ O

S <

< O

—1 0 00
\O —100/

E>(e75)(A)

Es(e12)(A)
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One has the structure theorem for the Elementary
Unimodular vector group EUmM,.(R):

Theorem. [(Selby Jose and Ravi Rao)] Let R be a
commutative ring in which 2 is invertible. Then

EUm,(R) is generated by elements of the form
E(e;)(w), E(e})(x), E(eu)(y), E(e};)(z), for
w,x, Y,z € R, 1< 1,3 <r+1.



A Witt Group Symbol on the Orbit Space

We shall show that it is possible to define a group
structure on the orbit space Um,(A)/E,(A),

n > 3,d = dim(A) < (2n — 3), which has a Witt
group structure, similar to the one which Vaserstein did
when d = 2, n = 3. However, we need to assume, for
simplicity, that —1 is a square in the ring. In particular,
under the additional hypothesis, we can recover van der
Kallen's theorem, as well as Vaserstein's theorem.

The idea of the proof in a nutshell is to imitate the
Vaserstein construction of Wg(R), and to construct a

32
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new Witt group Wgym(R), which we call the
Elementary Unimodular Witt group. The (equivalence
class) of the Suslin matrices will offer the natural access
to the orbit space into this Witt group. The fact that the
addition of two vectors can be defined will be due to the
Mennicke-Newmann lemma. It will be possible to reach
the situation described in this lemma due to the
analogue of the famous lemma of Vaserstein that
elementary orbit equals elementary symplectic orbit.



Theorem. The Vaserstein-Suslin symbol

S : Um,(R)/E(R) — Wgxum(R)

[v] — [Sh(v, w)] € Wpum(R)

is an isomorphism, for n > (d+ 3)/2}, d being
the stable dimension of R. Moreover, if

n > max{3,d/2 + 2}, then this is the universal weak
Mennicke symbol.

34



Cohn Orbits Versus Elementary Orbits

Definition. Let

v=(ag,q1y ... ,Q;),
w:(bo, bl, c oo o br,a)

with v.w? = 1. We say that the vector
D— ’UCZJ()\) —
(a(),... ,ai—l—)\bj,... s Aj — )\bz, ,a,r),

for0 < 1 £ 9 <, isa Cohn transform of v w.r.t. the
vector w, with v.w? = 1.

35



The Cohn orbit of a vector v is the vectors got by a
sequence of Cohn transforms of v w.r.t. suitable vectors
w with v.w? = 1 or to a Cohn transform of v.

36
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We show that the Cohn orbit equals the elementary orbit:

{(a,b,c); (a',V,c)} —

20D {(a = A byt M) (@0 — (e Ad), ¢+ b))

002 (CL — )\Cl, N )\CL/); (ala bla C/)}

W {(a— A+ A +),b, (c+ Ad') — A)};

{(a",b) — (c+ Ad),d + D)}

—  {(a+A\b,b,c); (a,b —c—\d,c + D)}

L {(a+ 2b,b,e); (a0 = A, )}



Key Lemma

Let v = (ao,al,... ,Cl,f,a), w = (b(),bl,... ,br), with
vw! =1. Then, for2<:<r+1,r > 2,

S:(e1,e1 + )\e,,;)tOpSr(v, w)S, (e, el + )\ei)bOt —
Sr(VE;1(—\), wE;(\)
S'r(el + Aeia el)bOtSrp(’U, w)Sr(el -+ )‘eia el)top —

Sf,«(’UElz’()\), ’UJEzl(—)\)).

(The case when » = 1 is left to the reader.)

38



Moreover, if 1 < 1 < 7, then

S-(e1 + Aeit1,€1)"PS,. (v, w)S,(e1 + Aejy1, 1) =
Sr(vCoi(—A), w)

S,(e1, e1 + Aei11)*' S, (v, w) S, (e1, e1 + Aei1)"P =
S (v, wCy;(—A))

39



Key Lemma is an Action

Lemma. Let

g if r even

~

I = 0 J
1) if r odd.
J._. 0O

Then forc =e;,e;,1 <1< r, A€ R,

(E(c)()\)bt if r even

iE c)(A\ thj_l =
A E(c)(MN)® if r odd.

40



Corollary. Ifr is even, EUm,(R)*® acts on
S ={S,(v,w)|S;(v,w) € SUm,.(R)}.

For any r, EUm,.(R) acts on S.

Proof. Fora € EUm,(R)" (respectively EUm,(R)),
the action is given by aS,.(v, w)(J,atJ1). O

Remark. 1. It is not too difficult to show even when r is
odd that EUm,(R)* actson S.

2. Since EUm,(R) C EUm,.(R)!™. Hence, via the
above remark, EUm,.(R) acts on the set S as above

41



Notation. We will write o™ for j,aatJNr_l, when 1 IS
even, and the appropriate matrix when r is odd to ensure
that one gets an action on S.

Examples:

For0 <147 <7r+41, we have for A = —2zxy. If

o = {[E(e:) (@), E(e;) ()]},

—1

then o = o™, and

S, (vCi;(N), w) = aS,(v,w)a ™"

)



|f
B =A{lE(€e;)(x), E(e})(y)]}
then B3* = 37!, and

Sy (v, wC’ij()‘)) = BS,(v, w)ﬁ—l

It
v = {[E(ej-1)(x), E(e;_;) ()]}

then v* = v~ 1, and

Sr(inj()‘)v ’UJEji(—)\)) — ’)/Sr(v, ’w)')/_1

43



Central Positioning

Definition. Let a,3 € Gls.(R). We shall think of
them as 4 X 4 block matrices

_ [ &11 ©&a2 ([ B11 B2
== (Oﬂ21 0422) 0= (512 ﬂzz)

Define
/all 0 0 0412\
0 [Bi1 B2 O
— c Gly (R
a®pf 0 (B2 B2 O 1r(R)

\Oézl 0O O azz)



We can loosely say that (3 is in the center of v (® 3.
For example, note that the Suslin matrix S, (v, w) has a
Sr_1(v*, w*) in its center. (Of course, the Suslin matrix
S, (v, w) is not exactly got by centering.)

[ap 0 ar a)
0 agp —b2 bl
—bl a9 b() 0

\—bg — a1 0 b()/




Equivalence Relation on the Suslin Matrices

We shall always regard o« € Slo-(R) to be sitting inside

Sl,-+1(R) via centering, i.e. a should be replaced by
(I ® o).

Given

S’I"(”? w)? S’l"(v*9 w*)7

we say that they are equivalent

Sr(v,w) ~ S, (v, w")

46



If there exist a telescope of elementary unimodular
matrices

€1 € EUmr(R), Eo & EUmr+1(R),
and elementary matrices
e,e” € E,11(R)

such that

(€261) (Sr(e18, 16" ) © Sp(v, w))(e261)" =
Sr(ele*a 61€*t_1) O Sr(’lJ*, ’UJ*))

47



Remark. One can have a more general definition in
which the telescope will have more matrices. This is
needed in some applications.

It can be verified that ~ is an equivalence relation on the
set of all Suslin matrices of type r. Transitivity is
non-trivial, and needs the following type of observation

48
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An Analogue of Vaserstein Lemma

Given a Suslin matrix S,.(v,w), and a @ € E, 1 (R),
there exists an elementary unimodular matrix
e € EUmM,(R)® such that

EST(’U, ’UJ)E* — Sr(’UH, wgt—1)7

with ee™ = 1.

This lemma may be regarded as the equivalent statement
to the famous Vaserstein lemma which states that

€1E2n(A) — elEszn(A) .
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Injectivity of the Vaserstein-Suslin Symbol

If one has I =
(e261) (S, (e1€, 1€’ ) ® S, (v, w))(e1€2)*.
Then multiplying by e2~1 gives
(S.(e1e, e1e’ ) ® S, (¥, w)) = Srr1(e16, 10" ),

for some elementary 6. (Here v is in the elementary orbit
of v, etc.)

Note that the left hand side is a matrix got by centering
two matrices, and hence so is the right hand side.



Moreover, a Suslin matrix which is got by centering is
essentially of the form

Sr(z,y) © Sr(x, g)_la

where x is in the elementary orbit of @, etc. Since
Sy(x,y) € EUmM,(R), the result follows.
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The Elementary Unimodular Witt Group

Weum(R)

One can show that & defines an addition on the
equivalence classes of Suslin matrices of size 2”; and this

Is actually an

abelian group Wgym(R) — known as the

Elementary Unimodular Witt Group.

Once we esta
It IS easy to s
the identity e

olish the closure of the addition operation,
now that (® is associative. We have I as

ement, and

[Sr (v, w)] ™! = [Sp(v, w) ] = [Sp(w, v)].
It is also easy to show that (® is commutative.

52
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Why is our group and the van der Kallen group structure
iIsomorphic? The reason is that we can show that the

product * In both the groups is the obvious expected
K -theoretic product:

(ao(]_ — ao), A1geoe o a,n)] —

[(agya1y... ya,)] *[[(1 —ag),@1y... 5 ap)]

Addition is by central placement. The surjectivity of the
Suslin symbol will follow if one can manipulate with the
‘'sum’ of two Suslin matrices by means of Elementary

unimodular matrices and succeed in getting a single
Suslin matrix in the center.



([ap 0 0 O 0 O
0 a, O 0 0 0
0 O a 0 —as —ag
0 0 0 a( b3 —bz
0 0 bz —das b() 0
0 0 b3 a, 0 b
b, —a3 0 0 O O

\bs —a, 0 0 0 O

Solag, —az, —as; by, —ba, —bs] ©Ss|ay, as, —as; by, by, —bs]

Let us call it o

a, — a,g\
bs; b,
0 0
0 0
0 0
0 0
bp O
0 by /

54
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Remark. It is due to the Mennicke-Newmann Lemma
that we are able to consider starting with the above
matrix. But we have to ensure first that we can reduce to
this case. This is done via the analogue of the lemma of
Vaserstein that

'UE2n(A) — ’UESan(Qb) ’

for any alternating matrix ¢ € Sla,(A) of Pffafian one.



An Analogue of Vaserstein Lemma

Given two Suslin matrces S,.(v, w), S,(v*, w*), with
v & v'E,. . 1(R), and a 8 € E, {(R), there exists an
elementary unimodular matrix e € EUm,,.(R)® such
that

S, (v, w)(e)* = S, (v, wh" ),
with €S,.(v*, w*)(e)* = S, (v*, w*).
Remark. Our proof of this needs an application of the

Local Global Principle for EUm,.(R|X]) to reduce it to
the previous version of the lemma when v* = e; = w*.
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— €1a(€1)*

E3(e2) (1), Es(e3) (—1)""]
Es(e3)(1)*P, Es(e1)(—1)""

— €2a1(€2)*
= [E3(e3)(a2)*?, Es(e})(—1)""]

— 83()(2(53)*

[Es(ez)(as) P, Es(e})(—1)°"]

— €4a3(€4)*
= [Es(es)(as)"?, Es(e})(1)"]



— 85(14(55)*
= E3(e})(—bo)*"

— 56045(86)*

Es(e3)(bs)?, Es(el) (1)

— 87046(57)*

Es(e3)(1)"P, Es(e1)(—1)""
E3(e2) (1), Es(e]) (—1)""

Es(e3)(1)*P, Ez(e1)(—1)""

88(11(58)*

= Ej3(e3)(ao)”

58
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Unimodular 2 X n-Vectors

We briefly discuss a second application — we still have
to work out the details for it. Does the orbit set of

unimodular 2 X n matrices (i.e. right invertible 2 X n
matrices)

Ums,(R)/E,(R)

have a group structure? Size restrictions are due to:
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Mennicke Newmann Lemma for
Unimodular 2 X n-Vectors

Llet n > 4, and d < 2n — 5. Let two elements of

Ums,(R)/E,(R) be given. Then we may choose
representatives of the form

a b yi1 Y2 z11 c* Zin—4a
9
g —a Y21 Y22 221 *°°*° Z2an—4

(1—a —b yu Y2 zun - Zln—4)
—g 14a ys1 Y22 221 **° Zop—4a/)
respectively.
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Remark. [t is easy to see that if

b
X:<a ),Yz(yll y12>,
g —a Y21 Y22
Z = (211 ce e ZIp—4q4 Z21°°° Z2n—4) ]

then X (I — X,Y,Z) is a unimodular 2 X n matrix.
Naturally, we expect it to be the product of the above
two!

There 1s a very natural way to approach this problem
based on the earlier theory.



Let (vq, wq), (v2, wz) (v3, w3), (v4, wy) be four pairs
of vectors with v;.w? =1, for all 1 < 2 < 4., and with
Vi,

-

wy;

Consider the Suslin matrix S;.(v, w) corresponding to
the ‘cocatenated vectors’
UV = ('Ula U2, U3, U4)7 w — (’wla w2, W3, w4)

Of course, S,.(v, w) is elementary unimodular, so we
cannot hope to get much if we study its class in

Weum(R).
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However, we can study its class in a modified Witt
group. The fact that we are dealing with orbit space of
2 X m matrices by E,,(R) places a natural restriction on
us. This allows us to define a natural sequence of
subgroups EUm,,(R) of EUm,(R), V n. We shall
study the class of S,.(v,w) w.r.t this subgroup.

The injectivity of the natural map
Uman(R)/En(R) — Wi (R)

Is not difficult to show.
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The surjectivity part is the key point. The above version
of the Mennicke-Newmann lemma should allow us to
conclude that the class of the (®) sum can be cut down iIn
size, as before. However, the sizes of what we have to
deal with is just too large to physically work out - the
minimum size is 2'%. So we have to work it out more
efficiently. The combinatorial aspect of the Key Lemma
gives a way out, and there i1s a method in which we have
to work out that the class of the (®) sum can be cut down
working with 16 X 16 matrices essentially.



Completing Unimodular Polynomial Vectors
of Size > & , T 2 over R[X]

One expects to prove a M. Karoubi type theorem for the
Elementary Unimodular Witt group, viz.

1
WEUm(R[X]) =~ WEUm(R)a if 5 € R.

Moreover, as is known for the Elementary symplectic
Witt group, one expects that the Elementary Unimodular
Witt group is also k-divisible if% € R.

65



Hence, one hopes to derive from this that

Um,(R[X] = e;SL.(R[X]) if% € R,

for r > {g + 2}, as was shown by M. Roitman in
positive characteristics.
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[ap 0 0 O —1 0 a), —as)
0 a O O 0 —X by b,
0 0 agp 0 —Aao2 —Aas 0 0
0 0 0 Ao bg —b2 0 0
0 0 b2 —das b() 0 0 0
0 0 b3 a- 0 bp 0 O
—b, —az A 0 0 0 b O

\bs —aj, 0 1 0 0 0 by

1 — 81&(61)*
e1 = [Es(ez2)(1)%, Es(el)(—1)%][Es(el) (1), Es(e1)(—1)"]
t denotes *P and ? denotes ?°! above.



/ao

0
0
0
azbz
0
0

\ b5

o0 0 =1 0 a, —az )
a 0 0 0 —A bs 0
0 a O 0 —a3 —aqa, 0
0 0 a by —by 0 —azb;
0 b2 —dadsg bO 0 0 0
aza, bs O 0 by 0 0
—as3 A 0 0 0 bo 0
—a, 0 1 0 0 0 bo /

Qy = €3001(€2)"
e2 = [E3(e3)(az)™?, E3(e})(—1)"]
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0 0 O —1 O 0 —as \

ao 0 0 0 —\ b3 0

0 N 0 0O —as _aza’z 0

0 O ag b3 0 0 —ayb,

0 0 —asz b O 0 0
aza'z bs O 0 bo 0 0
—as3 A 0 0 0 bo 0

0 0 1 0 0 O by

Qs = £302(€3)”

€3 — [E3(€2)(a’2)top, Eg(ei)(—l)bOt]
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fa

0 0 0 -1 0 0 0)
agp 0 0 0 —A b3 0

0 agc 0 0 MNas = O

0 0 agp bg 0 0 —x'
0 O 0 bp O 0 O
— L b3 0 0 b() 0 0

0 —)\,ag A O 0 0 b() 0
\bs 0 0 1 0 0 0 b
N = (A—1);z = —asal, — asbs, 2’ = (1 — agbo)

4 — é74043(@34)*
4 = [Es(es)(as)"?, Es(e})(1)"]

0
0
0
a,/,l
0
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fao0 0 0 0 —1 O 0 0)
0 agp 0 0 0 —A b3 0
0 0O a 0 0 MNag Y 0
0 0 0 agp b3 0 0 —1
1 0 0 0 O O 0 0
0 —Y b3 0 0 —)\,b() 0 0
0 —XNaz A 0 0 0 —XNb O

\bs 0 0 1 0 O 0O 0)

Yy = x — apbg
5 — 85044(65)*
e5 = Es(e})(—bo)"*



0 0 0 —1 0 0

ao 0 0 0 —A —)\,bg

0 ag 0 0 JMNaj y*

0 0 ag 0O 0 0

0 0 0O O 0 0
—y* —A,bg 0 0 —)\,b() 0
)\,0,3 A 0 0 0 —)\,b()

0 0 1 O 0 0

Qe =— €6a5(€6)*
e6 = Es3(e})(b3)'P, E3(e})(1)"]

0
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(fap O 0 0O O 0 1 0)
0 ao O a O 0 01
0O O ao 0 y* Nas 0 0
0 0 0 ag —A,bg — A 00
0 0 A )\’&3 —A,b() 0 00
0 0 —>\,b3 —y* 0 —)\*b() 00
-1 0 0O 0 0 0 00
0o -1 0 0 O 0 00

a7 = erag(er)”
er = [Es(e3)(1)*°P, E3(e1)(—1)°"]
[Es(e2)(1)%, Es(e})(—1)°][Es(e3)(1)*, Es(e1)(—1)°]
t denotes *°P and ® denotes ?°t above.




