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Introduction. The equation

a3 + b3 + c3 + d3 = 0 (1)

has been studied by many mathematicians since Diophantus (see [B, p. 24]; [C]; [D, pp.
550–562]; [S]). Partial solutions in integers and complete solutions in rational numbers
have been found.

A general solution of (1) found by Euler (see [H, pp. 290–291) involves the following
polynomials si = si(x, y, z) :

s1 := 9x3 + 9x2y + 3xy2 + 3y3 − 3x2z + 6xyz − 3y2z + 3xz2 + yz2 − z3,
s2 := 9x3 − 9x2y + 3xy2 − 3y3 + 3x2z + 6xyz + 3y2z + 3xz2 − yz2 + z3,
s3 := −9x3 + 9x2y − 3xy2 + 3y3 + 3x2z + 6xyz + 3y2z − 3xz2 + yz2 + z3,
s4 =: −9x3 − 9x2y − 3xy2 − 3y3 − 3x2z + 6xyz − 3y2z − 3xz2 − yz2 − z3.
Using these polynomials, all rational solutions to (1) can be described in the following

way:

THEOREM 1. All rational solutions (a, b, c, d) of (1) up to nonzero rational factors are
in 1-1 correspondence with all triples (x, y, z) up to nonzero rational factors according to
the formulas (x, y, z) 7→ (a, b, c, d) = (s1, s2, s3, s4); and (a, b, c, d) 7→ (x, y, z)
= (ac− bd,−a2 + ab− b2 + c2− cd+ d2, a2− ab+ b2 − ac+ 2bc+ c2 + 2ad− bd− cd+ d2).

This theorem allows us to describe all integer solutions as follows:

COROLLARY 2. Up to a rational factor, every integral solution (a, b, c, d) of (1) is equal
to (s1, s2, s3, s4) where si = si(x, y, z) are as above with integers x, y, z. Every integral
primitive solution (a, b, c, d) of (1) can be written uniquely as (s1, s2, s3, s4)/D with D =
gcd(s1, s2, s3, s4) where si are as above with integral primitive (x, y, z).

Recall that an n-tuple (u1, . . . , un) of integers is called primitive if gcd(u1, . . . , un) = 1.
Here gcd stands for the greatest common divisor which takes integral nonnegative values.

Corollary 2 does not give an explicit description of all integral primitive solutions to
(1) since it is not clear from the definition D = gcd(s1, s2, s3, s4) what are possible values
for D when (x, y, z) ranges over all integral primitive triples. So the complete solution of
(1) in integers was pointed out as an open problem in [B, p. 10], [[C, p. 1251], [H, p. 290],
[Ha, pp. 199–200], [R, v.3, p. 197], [S, pp. 121–122].

For comparison, let us consider a simpler Diophantine equation

a2 + b2 = c2. (2)
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It is well-known that every primitive integral solution (a, b, c) of (2) can be written as
±(x2 − y2, 2xy, x2 + y2)/d with a primitive pair (x, y) which is unique, up to sign, and

d = gcd(x2 − y2, 2xy, x2 + y2).

The explicit description of this number d is given as follows: d = mod(x, 2)+mod(y, 2).
Here and further on, mod(x, 2) denotes the remainder on division of x by 2. So d = 2 when
xy is odd, and d = 1 otherwise. Thus, the equation (2) is completely solved in integers.

In this paper we address the problem of finding an explicit description of the number
D in Corollary 3. Our main result is:

THEOREM 3. Every integral primitive solution (a, b, c, d) of (1) can be written uniquely
as (s1, s2, s3, s4)/D with D =gcd(s1, s2, s3, s4) = d0d2d3 where polynomials si = si(x, y, z)
are as above with integral primitive (x, y, z) and

d0 = gcd(x, 3y2 + z2)gcd(y, 3x2 + z2)gcd(z, 3x2 + y2),

d2 =





4 when mod(x, 2)+mod(y, 2)+mod(z, 2) = 2 and mod(xyz, 4) 6= 0,
2 when mod(x, 2)+mod(y, 2)+mod(z, 2) = 2 and mod(xyz, 4) = 0,
1 otherwise,

d3 =
{

3 when mod(z, 3) = 0 and mod(xy, 3) 6= 0,
1 otherwise.

Our description of D is explicit enough to answer the question of what are its possible
values.

COROLLARY 4. When (x, y, z) ranges over all primitive integral triples, the number D
in Corollary 2 ranges over all numbers of the form t2t3t where t2 is 1 or 8, t3 is 1, 3, or 9,
and t is any product of primes of the form 3k + 1.

Note that while the number d for the equation (2) is bounded, the number D for
the equation (1) is not. While there are many polynomial solutions for (1) with integral
coefficients besides (s1, s2, s3, s4), we believe that the set of primitive integral solutions of
(1) cannot be covered by a finite set of polynomial families with integral coefficients.

1. Proof of Theorem 3. By Theorem 1, (s1, s2, s3, s4) = 0 if and only if (x, y, z) = 0.
Assume now that (s1, s2, s3, s4) 6= 0. Let D = gcd(s1, s2, s3, s4). Let pm be a primary factor
of D, i.e., p is a prime and pm is the highest power of p dividing D.

We have to prove that pm is equal to the highest power pn of p dividing d0d2d3. (By
definition, D and all di are positive.)

Now we consider three cases:

Case 1 : p ≥ 5. First we prove that m ≤ n, i.e., pm|d0. If m = 0, there is nothing to
prove, so let m ≥ 1.

Since pm|s1, we conclude: if p divides both x and y, then p|z3, hence p divides z; if
p divides both x and z, then p divides 3y3; if p divides both z and y, then p divides 9x3.
Since (x, y, z) is primitive and p 6= 3 , p divides at most one of the numbers x, y, z.

Since pm divides s1 + s2 + s3 + s4 = 24xyz, we conclude that pm divides x, y or z.

2



Subcase 1x : p ≥ 5 and pm divides x. Then pm divides

(s2 + s3)|x=0 = 2z(3y2 + z2)

hence pm|3y2 + z2. Therefore pm|d0.

Subcase 1y : p ≥ 5 and pm divides y. Then pm divides

(s2 + s3)|y=0 = 2z(3x2 + z2)

hence pm|3x2 + z2. Therefore pm|d0.

Subcase 1z : p ≥ 5 and pm divides z. Then pm divides

(s1 + s2)|z=0 = 6z(3x2 + y2)

hence pm|3x2 + y2. Therefore pm|d0.
Thus, pm|d0 in all three subcases, i.e., m ≤ n in Case 1.
Since pn|d0, we conclude that either pn divides both x and 3y2 + z2, or it divides both

y and 3z2 +x2 or else it divides both z and 3x2 +y2. Therefore in all three cases it divides
D, i.e., m ≥ n. Thus, m = n in Case 1.

Case 2 : p = 2. When only one or all three of (x, y, z) are odd, D is odd, so m = 0. In
this case, also all three d0, d2, d3 are odd so n = 0 = m.

Assume now that exactly 2 of the numbers (x, y, z) are odd, i.e.,
mod(x, 2) + mod(y, 2) + mod(z, 2) = 2.

Then m = 3, and n = 3 as well.

Case 3 : p = 3. When mod(z, 3) 6= 0, m = n = 0. When mod(z, 3) = 0 and mod(y,
3) 6= 0, then m = 1, and also n = 1. When mod(z, 3) = 0 = mod(y, 3), then m = 2, and
also n = 2.

2. Proof of Corollary 4. In the proof of Theorem 3 in Cases 2 and 3, we saw that
the power of 2 dividing D can be 1 or 8, and the power of three dividing D can be 1, 3 or
9. Now let p be a prime ≥ 5 dividing D. Modulo such a prime, −3 is a square, therefore
the multiplicative group modulo p contains an element of order 3, so p− 1 is divisible by
3, i.e., p = 3k + 1. Therefore D has the form described in Corollary 6.

Now it remains to be proved that every number D of this form can actually occur.
We write D = 2m3nd′ where m = 0 or 3, n = 0, 1, or 2, and d′ is a product of primes of
the form 3k + 1.

We take x = d′. We set

y =
{

1 when n ≤ 1,
3 otherwise.

Note that −3 is a square modulo every prime of the form 3k + 1, and so is −3y2.
By the Chinese remainder theorem, we can choose z such that mod(z2 + 3y2, x) = 0, i.e.,
gcd(x, 3y2+z2) = x = d′. In addition, we can impose on z any congruences modulo 4 and 3.
We require z to be odd when m = 0 and mod(z, 4) = 0 otherwise. We require mod(z, 3) =
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mod(D, 3). Still we can replace z by z+12ux with any integer u keeping all these conditions
intact. Since gcd(3x2 + y2, 12x) divides 12, we can arrange that gcd(z, 3x2 + y2)|12.

Then:

gcd(z, 3x2 + y2) =





1 when n ≤ 1 and m = 0,
3 when n = 2 and m = 0,
4 when n ≤ 1 and m ≥ 1,
12 otherwise,

gcd(x, 3y2 + z2) = d′,

and
gcd(y, 3x2 + z2) =

{
1 when n ≤ 1,
3 otherwise.

Therefore d0 = 2m
′
3n
′
d′ where

m′ =

{
0 when m = 0,
2 when m = 3,

and

n′ =

{
0 when n ≤ 1,
2 when n = 2,

hence D = d2d3d
′.
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