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ABSTRACT

If a sum of univariate polynomials is zero, then there are
restrictions on the multiplicities of zeros of the polynomials.

1 INTRODUCTION

The Euler-Fermat equations are
i+ Ty, =T (1.1)

with unknown z;. In 1769 Euler conjectured that (1.1) has no positive integral solutions
when m < n. This generalizes both his result for n = 3 and Fermat’s Last Theorem.
However his conjecture was refuted for m+1 =n =5 [LP] and then for m+1 =n =4 [E].
It is still unknown whether (1.1) has solutions with m+1=mn > 6 or with m =3 =n —2.
On the other hand, (1.1) has positive integral solutions for m > G(n) where G(n) is a
number related with the Waring problem, whose best known bound for large n is G(n) <
n(logn + loglogn + O(1)) [Wo).

In this paper, we are looking for solutions in F'[t] rather than in the integers. Here
F is a field of characteristic p > 0 and F'[t] is the polynomial ring in a variable ¢ with
coefficients in F.

When char(F') = 0, it is known that (1.1) has no nontrivial solutions in F'[t| when m <
(n/8)1/2 [NS]. Nontrivial here means primitive, indecomposable, nonconstant. A solution
to (1.1) (or to the more general equation (1.2) below) is called primitive if ged(xg, 1, ..., Zm)
= 1. We call it indecomposable if no partial sum on the left hand side is 0. We call it
nonconstant if not all z; belong to F.

When p = char(F') # 0, given any solution of (1.1) we can obtain solutions of a similar
equation with the same m but n replaced by np, by taking the p-th power. So in the case of
finite characteristic we can have nontrivial solutions of (1.1) with a small m and arbitrarily
large n. Moreover, it is known that (1.1) may have nontrivial solutions with m = 3 and
all n (including all n coprime with p) [P]. Furthermore, even for any fixed x, (1.1) with
m = 3 may have nontrivial solutions with arbitrarily large n coprime with p [V2]. See
Section 5.



Returning to the case p = 0, we consider equations more general than (1.1), the
generalized Fermat equations

cory® + . Fepmzpm =0, (1.2)

in m 4+ 1 unknowns z; with given n; > 2 and nonzero ¢; € F. Our goal is to prove that
(1.2) has no nontrivial solutions in F'[t] when n; are ‘large’ in a certain sense.

It is stated in [NS, p.486] where F' = C, the complex numbers, that when m <
(n/8)1/2, the equation (1.1) has no solutions in F[t] with nonconstant z; which are pairwise
coprime. Actually, the method of [NS] works when we relax the above condition to the
following condition: the solution must be be primitive, indecomposable and nonconstant.
Moreover, this method, involving the Wronskian of x;, works to prove the following;:

Theorem 1.3. Let char(F) = 0. Then (1.2) has no nontrivial solutions in F[t] when
Y1/n; <1/(m—1) and 0 # ¢; € F. In particular, (1.1) has no nontrivial solutions in
F[t] when n >m? — 1.

Thus, this relaxes the condition m < (n/8)'/2 of [NS] to the condition m < (n+1)1/2,
Proposition 5.2 of [DG] is our Theorem 1.3 with the redundant condition that all z; are
pairwise coprime.

On the other hand, it is shown in [NS, p.486] (with attribution to Molluzzo) that (1.1)
has a primitive nonconstant solution with an arbitrary zo when m = [(4n+1)'/?] and F =
C. Moreover, this solution works for any algebraically closed field F' of any characteristic.
It is still unknown even for F' = C whether (1.1) may have nontrivial solutions when
(n+1)Y2 <m < [(4n +1)'/2].

We prove Theorem 1.3 after improving upon results of [Vo|, [BM], and [Z] generalizing
the (abc)-theorem (see the next section). An interesting question outside the scope of the
present paper is to establish a bound on the number of nontrivial solutions of (1.2) with
given ¢; € Ft| for ‘large’ n;. Results in this direction are known when char(F) = 0 (see
[B], [BS], [Mul], [Mu2]) or char(F') # 0 and m = 2 [Vo2].

2 THE (abc)-THEOREM AND ITS GENERALIZATIONS

For any nonzero polynomial f = f(t) € F[t] let v(f) denote the number of a € F', an
algebraic closure of F, whose multiplicity in f is not divisible by p. When p = char(F') =
0,v(f) is just the number of distinct zeros of f.

Theorem 2.1. Ifa+b=cin A = F[t] with p = 0,gcd(a,b) = 1 and (abc)’ # 0 then
deg(c) < wv(abc) — 1.

This well-known theorem (see [Ma], [L]) implies that the Fermat equation 2" +y" = 2"
has no nontrivial solutions in A = F[t] when p = 0 and n > 3 (this was known before [NS],
but in [NS] it was proved for n > 32). It also has other applications [Mul].

For a,b,c as in Theorem 2.1, one can ask whether there are restrictions on N =
v(abc),s = deg(c) other than the restrictions s < N — 1 given by the theorem and the
obvious restrictions 0 < s and N > 2. It can be shown by examples that the answer is
“no” when char(F') = 0, while the complete description of all possible pairs (s, N) in the
case of p # 0 seems to be a difficult open problem.
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Since we can switch a or b with -¢ in Theorem 2.1, its conclusion can be written as
follows: max(deg(a), deg(b), deg(c)) < v(abc) — 1. It follows from our Theorem 3.1 that
min(deg(a), deg(b), deg(c)) < v(abc) — 2. On the other hand, it is clear that

v(abc) < deg(a) + deg(b) + deg(c)) < 3max(deg(a), deg(b), deg(c)).

When char(F') = 0, it can be shown by examples that for any given integers M, s, N
such that 0 < s < M < N —1and s <N —2 < s+ 2M — 2 there are a,b, c € F[t] such
that deg(a) = s, deg(b) = deg(c) = M, a+ b = ¢, and v(abc) = v(a) + v(b) + v(c) = N. A
more general open problem is to describe all possible 6-tuples (deg(a),v(a), deg(b),v(b),
deg(c),v(c)). This seems to be a difficult problem even when char(F) = 0.

Here is our generalization of Theorem 2.1 in the case char(F') = 0:

Theorem 2.2. Let m > 2,y; € A = Fltl,y1 + - + Ym = vo,8cd(y1, ..., ym) = 1,
char(F) = 0, not all y; are constants, and no nonempty subsum of yi,...,Ym vanishes.
Then:

(a) deg(yo) < (m —1)(3_7g v(y;)),
(b) deg(yo) < (¥(Yo.--Yym) — L)m(m —1)/2.

We will obtain the theorem in Sections 3 and 4 below as a corollary of more precise
results. Namely, we will prove the theorem first in the case when y1, ..., y,, are linearly
independent over F' (see Theorem 3.1 below which is an improved version of Theorem
2.2 in this case) and then in the case when yq, ..., y,, are linearly dependent over F' (see
Theorem 4.1 below which is a more precise version of Theorem 2.2(b) and Corollary 4.8
below which is a more precise version of Theorem 2.2(a)).

Part (b) was first stated in [Ma], first proved in [BM, Theorem B] (with v(yo...ym)
instead of v(yg...ym) — 1) and then proved in a more precise form in [Z]. In the case when
Y1, .., Ym are linearly independent over F, Theorem 2.2 is a particular case (with g = 0) of
results of [BM] and [Vol] (although part(a) is not stated there explicitly). It is unknown
whether the number m(m —1)/2 in (b) can be replaced by a smaller number when m > 4.
It is proved in [BB] that the correct number must be at least 2m — 3 and conjectured (and
proved for m = 3) that the number is 2m — 3.

In the case m = 2 then both (a) and (b) coincide with Theorem 2.1 with p = 0, because
in this case we have v(yoy1y2) = v(yo) + v(y1) + v(y2) and 1 =m — 1 =m(m —1)/2.

Note also that (a) implies Theorem 1.3. Indeed, by obvious symmetry of the equation
Y1 + -+ Ym = Yo, the number deg(yp) in Theorem 2.2 can be replaced by deg(y;) for any
j and hence by M = max; deg(y;). Dividing (a) by M, we obtain that

DY w(y)/M < (m—1) v(y;)/ deg(y;).
=0 7=0

The number deg(y;)/v(y;) is the arithmetic mean of multiplicities of zeros of y; while
(m+1)/>" v(y;)/ deg(y;) is the harmonic average of deg(y;)/v(y;).
Corollary 2.3. Under the conditions of Theorem 2.2, the harmonic mean of
deg(y;)/v(y;) is less than m? — 1.

This corollary generalizes Theorem 1.3. (Applying the corollary to the case yo =
—cox™ Yy = cj:c?j for j > 1, we obtain Theorem 1.3.)
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3 IMPROVING UPON THEOREM 2.2
IN THE LINEARLY INDEPENDENT CASE

In this section we assume that char(F') = 0. Our main goal is to prove Theorem 2.2
in the case when vy, ..., y,, are linearly independent over F. In fact we state and prove a
more precise version of Theorem 2.2, Theorem 3.1, involving the orders ord,(y;) We also
obtain some known results as corollaries of Theorem 3.1.

First of all, for any integer d > 1 and any sequence k1, ...., kg of integers we will define
its “diversity” A(ki, ..., kq), which is an integer between 0 and (d — 1)d/2. Namely, we
consider the set X of all sequences [, ...., [ of distinct integers such that [; > k; for all

js. Then A(kq,...,kq), our diversity of ki, ...., kg4, is the maximal value of (d — 1)d/2 —
Z?zl(lj — k;). In other words, we compute the minimal total increase to make all k;
distinct and then subtract it from its maximal possible value, (d — 1)d/2. It is clear that
0 < A(k1,...,kq) < (d—1)d/2. (To see the first inequality, note that {k; + j} € X when
{k;} is nondecreasing.) It is also clear that A(ky, ..., kq) = 0 if and only if {k;} is a constant
sequence and that A(kq,...,kq) = (d—1)d/2 if and only if all k; are distinct. Here are two

other easy upper bounds for A(kq, ..., kq):
d
A(ky, ... kg) <Y min(j — 1,k; — ky)
j=1

when k1 < ... < k4 and

A(ky, .oy kg) < (d = 1)d/2 = (my — 1)my /2,

S

where my is the total number of js such that k; = s.

Now let y1, ...,yq € F[t] be linearly independent over F, and we set yo = y1 + - -+ Y.
For every a € F let kg < ... < kg be the numbers orde(y;) (0 < j < d) written in
nondecreasing order. We set

Aa(yr, - ya) = Ak, s ka)-

Similarly, let kg < ... < kq be the numbers {ord(y;) = —deg(y;) : 0 < j < d}
written in nondecreasing order. We set

Aoo(yl, ...,yd) = A(k‘l, ceny k’d)

Thus, Ay (Y1, -, Ya) is defined for all « € P1(F) = FU{co}. For almost all « (all but
finitely many) ord,(y;) = 0 hence Ay (y1,...,yq) = 0.

Theorem 3.1. Let m > 2,y; € A = Fltl,y1 + - + Ym = vo,8cd(Y1, ..., ym) = 1,
char(F') = 0, and assume that yi, ...., ym are linearly independent over F. Then

deg(yo) < _(m_ 1)m+ Z Aa<y17~“7ym)
a€PL(F)



m

< ~(m = 1jm/2 + (m — 1) min (o) m/2, Y ¥(3).

Note that Ay (y1, ..., Ym) # 0 if and only if either « is a zero of yg...y,, (recall that
ged(yi, .., Ym) = 1) or o = oo and not all deg(y;) are the same. Therefore

deg(yo) < (card(S) — 2)m(m —1)/2

when S is a finite subset in P!(F) and all y; are units outside S. Thus, our Theorem 3.1
contains Theorem 4 of [Vo] (which is essentially the same as Corollary 1 of [BM]) with g = 0.
Moreover Ay (Y1, ..oy Ym) < (m —1)m/2 — (I —2)(I — 1)/2 where [ is the number of js with
ord, (y;) taking a fixed value. (In the case when this value is not minimal, (I —2)(l —1)/2
can be replaced by (I — 1)I/2.) Therefore our Theorem 3.1 contains Theorem A of [BM]
with g = 0. Moreover, the number S of places o where not all ord,(y;) are 0 in [BM] and
[Vo| can be replaced by the number S’ < S of places a where not all ord,(y;) are the
same.

Theorem 3.1 gives Theorem 2.2 in the case when the polynomials y1, ...., ¥, in Theo-
rem 2.2 are linearly independent (just use that A, (y1, ..., Ym) < m(m — 1)/2 for all a to
get Theorem 2.2 (b) and that Ay (y1, ..., Ym) < (m — 1){#7 rorda(y;) # 0}).

After Theorem 3.1 is proved we will obtain some known results as its consequences,
and then, in the next section, we use it to prove an improved version of Theorem 2.2,
Theorem 4.1.

To prove Theorem 3.1, we introduce orders of finite-dimensional F-subspaces of F[t].

Let V be an F-vector subspace of A = F'[t] of dimension d. Assume that 1 < d < oo.
For any a € F, we can choose a basis v1, ....,vg of V such that ord,(vi) < ... <ordy(vq).
These numbers ord, (v;) are independent of the choice of such a basis. We define ord, (V)
by

ordg (V) = —(d — 1)d/2 + X ord o (v;).

Clearly, ord, (V) > 0. For any basis yi, ...., yq of V we have

orda (V) > —(d — 1)d/2 + 3¢ orda (y:).

This is because by addition operations with the polynomials y; we can make all
ord, (y;) distinct while increasing them or keeping them the same. To get a better bound,
we can replace one of y; with minimal ord,(y;) by yo = y1 + - - - + yaq. This proves a more
precise inequality:

Lemma 3.2. Let V be as above and y1, ....,yq a basis of V over F. Then, for all o € F,

ordg (V) > —A(orda(y1), -...orda(ya)) + Y5 orda (y;)
and

Orda(v> 2 _Aa (yl: sy yd) + Z?:lordoz(yj) - min(orda(y()): ---70rda(yd)>'

Also we can choose a basis vy, ....,vq of V such that deg(vy) < ... < deg(vg). The
numbers deg(v;) are independent of the choice of such a basis. We set

d
deg(V) = —d(d —1)/2 + Z deg(v;)
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and

d
ordeo(V) = —d(d — 1)/2+ Y ords (v;),

where ord. (v;) = — deg(v;).

Clearly, deg(V') > 0 and deg(V)+ord (V) = —d(d — 1). For any basis vy, ....,vq of V
we have deg(V) < —d(d—1)/2+ Z?Zl deg(v;). Moreover, we have the following analogue
of Lemma 3.2:

Lemma 3.3. The conclusions of Lemma 3.2 also hold for a = oc.

Proof. 1t is similar to that of Lemma 3.2. Also Lemma 3.3 can be reduced to Lemma 3.2
by a change of variable.

Proposition 3.4. deg(V) =) cpord.(V).

Proof. We pick a basis vq,....,vg of V and consider the Wronskian D = det(vﬁj )). It is
a nonzero polynomial in F'[t], and it is determined by V up to a nonzero scalar factor.
Choosing v; as in the definition of deg(V'), we see that deg(D) = deg(V'). Indeed, writing
the determinant D as a sum of d! terms, we see that every nonzero term has degree deg(V)
and that the sum of coefficients in this degree is, up to a nonzero scalar factor equal to the
product of leading terms in v;, the determinant of the matrix ((jk_il))lgingd which is, up

to the factor (1!...(d — 1)!)%, the Vandermonde determinant det(k?) = [Tic;(ki —k;) #0
where k; = deg(v;).

On the other hand, choosing v; as in the definition of ord, (V'), we see that ord, (D) =
ord, (V) for all @ € F'. Indeed writing the determinant D as a sum of d! terms, we see that
every term is divisible by (z — a)°"4=«(") and that the sum of the terms of order ord, (V)
is, up to a factor of order 0 equal to the product of v;/(z — )°™d=(¥) the determinant
of the matrix ((jk_il))lgi,jgd which is, up to the factor (1!...(d — 1)!)¢, the Vandermonde
determinant det(k7) = [Tic; (ki — kj) where k; =deg(v;).

Now deg(V) = deg(D) = [[,cporda(D) = [Jorda (V).

Remark. When d = 1, the proposition says that deg(D) = }_ . pord, (D) for every
nonzero polynomial D € F[t].

Remark. As a corollary of the proposition, ) ord, (V) < co.

Now we are ready to prove Theorem 3.1. Let dy < d; < ... < d,;, be the degrees of
y;(0 < j < m) written in nondecreasing order. Then d,,—1 = d,,, > m. By Lemma 3.3
with d = m,

m

deg(V) = —m(m — 1) = orde (V) < =m(m = 1) + Do (Y1, s Yon) = d + 3 ;.

J=0

On the other hand, since ged(y1, ....,ym) = 1, for any a € F we have

min(ord, (¥1), ---,0rda (ym)) =0
and, by Lemma 3.2 with d = m,



Orda(v) > _Aoz(yla ---7ym) + Zorda(yj).

j=1

Switching, if neccessary, —yo with a polynomial y; such that y;(a) # 0, we have

Orda(v) > _Aoz(yla ---7ym) + Zorda(yj).
=0

Taking the sum over all @ € F' and using Proposition 3.1 and the fact that deg(y,) =
> -ord,(y;) for each j, we obtain

deg(V) =3 cporda(V) > =32 e p Aalyts s Ym) + 2001 dj-
Comparing these upper and lower bounds for deg(V) and cancelling Z;n:() d;, we
obtain the conclusion of Theorem 3.1.

Here are some consequences of Theorem 3.1.
Corollary 3.5 (cf. Theorem on p.480 of [NS]). Let n > 3 and Z;nzl z?t =t in F[t] with
char(F) = 0. Then m? —m > n.

Proof. Without loss of generality, we can assume that F' is algebraically closed and that
xt, ..., zl are linearly independent (otherwise, ¢ is a sum of a smaller number of n-th

A m

powers). Also ged(z?, ..., z],) = 1 because this is an n-th power dividing ¢t and n > 2. Let
M = max(deg(z1), ..., deg(zy,)). By Theorem 3.1,

Mn < —(m = 1)m/2+ (m = )((t) + 3 v(z;))

<—(m-1)m/24+ (m—-1) 1+ Mm) < Mm(m —1),

because v(y;) = v(z;) < deg(x;) < M,v(t) =1, and m > 3 when n > 3.
Remark. The condition n > 3 is necessary, and it is implicit in the theorem on p.480
of [NS], see p.479 or 481 in [NS].

Corollary 3.6. Letn > 2 and 2;”:1 x? = tag in F[t] with zo # 0 and char(F) = 0. Then
m? >n+ 1.

Proof. Without loss of generality, we can assume that F' is algebraically closed, that
xt, ...,z are linearly independent, and that ged(z1, ..., z,) = 1. Let

M = max(deg(z1), ..., deg(xm)).

By Theorem 3.1, Mn < (M(m +1+1))(m — 1) — m(m — 1)/2, hence n < m? — 1 when
n > 3. When n = 2, notice that m > 2.

Remark. This improves upon the theorem on p.483 of [NS| which asserts that m? >
n/8.

Theorem 3.7. Let n > 2 and x7 + -+ - 4+ z', = xg in F[t| with char(F') = 0. Assume
that m > 1 and x%, ..., x}, are linearly independent over F. Then

m

deg(zg) > M(n —m? +m) + (m — 1)m/2,
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where M := max(deg(z1), ..., deg(zm)).

Proof. Without loss of generality, we can assume that F' is algebraically closed, that m > 2
(the case m = 1 is trivial), that ged(z1, ..., z,,) = 1 (the general case follows easily from the
primitive one), that n > m(m — 1)/2 (otherwise there is nothing to prove), that z7, ..., 27,
are linearly independent over F' (otherwise the number m can be reduced), and that M =
deg(zy,). Using Theorem 3.1 with yo = —27,,ym = —z0,y; = x} for j < m — 1 and the
fact that
Aoz(yb X ym) < (m - 1)(27:_018ign(0rda(yj>)+0rda(ym)

for all a € F, we obtain that

m—1

nM = deg(yo) < deg(zo) + > v(y;) —m(m —1)/2

< deg(zo) + (m —1)mM —m(m —1)/2,

hence deg(zg) > M(n —m? + m) + m(m —1)/2.

Remark. Our theorem is close to the theorem on p.481 of [NS| and has the same
conclusion as the second conclusion of that theorem. The condition that n > 2 is implicit
in [NS] (without this condition the theorem is not true). We relaxed the condition of
[NS] that all z; are nonconstant and nonlinear to the condition that not all of them are
constant. We imposed an additional condition that =7, ...,z are linearly independent
over F' to prevent counterexamples to the theorem of [MS] like the following two:

(i)m=2anyn>2, any M > 1,27 = tM 29 = —tM 27 =0;

(i) m=2,any n >3, any M > 1,21 = t" x5 = tM x4 = 2tM.

The condition is missing in [NS] by mistake. When F = F, this condition is weaker
than the condition that x(y is not a sum of a smaller than m number of n-th powers in
F[t]. Tt could also be replaced by the condition that xq is not divisible by any nonconstant
n-th power in F'[t].

The first conclusion of the theorem of [NS] is that deg(xzg) > n—(m—1)m/2. However,
this conclusion is stated twice on the same page as deg(zo) > n — (m — 1)m, which follows
from our theorem because either M = 0 and m = 1 or M > 1. Also the theorem implies
that deg(zg) > n — (m — 1)m when either n > m? — m or M = 1. By the way, when
M =1 it is easy to prove that in fact deg(xg) > n —m + 1, and that this bound cannot
be improved when n > m — 1 and F = F.

Theorem 2.2(a) with linearly independent v, ...,y,, (which we have obtained from
Theorem 3.1) allows us now to obtain Theorem 1.3 in the following two cases (in general,
Theorem 1.3 follows from Theorem 2.2 which we will obtain from Theorem 4.4 below).
Corollary 3.8. The equation (1.1) has no nonconstant indecomposable primitive solutions
when n > m?2 — 1.

Proof. Consider such a solution of (1.1). Let M = max(deg(x1), ..., deg(xy,)). If 27, ..., 2]

are linearly independent, then Theorem 3.1 via Theorem 2.2 (a) gives that Mn < (m +
M (m —1).
If z7, ...,z are linearly dependent, we consider a linear relation of minimal length.

Permuting terms, we can assume that this relation is c127 + - - - + cay17;,; = 0. If not all
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terms here are colinear, we divide this equality by the ged and pass to F to conclude that
n < d?> —1 < m? — 1. Otherwise, we also pass to F' and replace all terms by one term of
the form 2™ and after dividing by the gcd we obtain an equation of the form (1.1) with
not all terms constant and with the same n but m replaced by m — d < m, hence we are
done by induction on m.

Corollary 3.9. The equation (1.2) has no nonconstant indecomposable solutions with
pairwise coprime terms when Y 1/n; < 1(m —1).

Proof. Again either the terms are linearly independent and we are done by Theorem 3.1
or we can obtain a shorter equation of the same form form (passing, if necessary, to F).
Here we cannot divide by the gcd because this produces nonconstant coefficients, but we
do not need to do this because the terms are pairwise coprime.

4 IMPROVING THEOREM 2.2 IN GENERAL

Now we drop the condition about linear independence and prove a more precise version
of Theorem 2.2 involving the dimension d < m of Fy; + --- + Fy,, and another number
d’ < d which is defined below.

First we introduce two definitions which make sense for any sequence (family, mul-
tiset) yo, ..., ym of vectors in an F-vector space. Following [BM], a nonempty subset
I c {0,1,...,m} is called minimal if the corresponding family {y; : j € I} of vectors
is linearly dependent over F' but {y; : j € J} is linearly independent over F for any proper
subset J C I. A linear relation is called minimal if the corresponding family of vectors is
minimal.

Clearly, card(l) < d + 1 for any minimal set I. We define d’ + 1 to be the maximal
cardinality of the minimal sets. Thus, d' < d = dim(Fyo + - -+ Fym).

In general not every index j needs to be an element of a minimal set. The condition
Yo = Y1 + -+ + Ym in Theorem 2.2 implies that every j is contained in a minimal set.
Namely, we can take a basis not involving j, write y; with respect to this basis, and drop
zero terms to obtain such a set. This condition, together with the condition of no vanishing
subsums of Theorems 2.2 and 4.1, implies that all linear relations between yo, y1, ..., Ym
follow from minimal relations (Lemma 4 of [BM]).

We call a family (multiset) yo, ..., ym of vectors irreducible if for any partition I U
I' ={0,1,...,m} into nonempty parts, the corresponding vector subspaces > jer Fyj and
> jer Fy; have a nonzero intersection. For example, every minimal set gives an irreducible
family of vectors. Under the conditions of Theorem 2.2, the family yo, ..., Y, is irreducible.
It can be shown that for every irreducible family zg, ..., z,, of vectors there are nonzero
c; € F such that y; = c;z; satisfy the conditions of Theorem 2.2. So the conditions of
the next two theorems are not really more general than those of Theorem 2.2 (but the
conclusions are stronger).

Theorem 4.1. Let m > 2,y; € Ft],gcd(y1,...,ym) = 1, and yo,y1, ..., Ym be an irre-
ducible family. Let d be the dimension of Fy; + -+ Fy,, over F and let d < d be as
above. Then:

(a) deg(yo) < ((Yo---ym) — 1)(d' — 1)d/2.
Furthermore, if deg(y1) = ... = deg(ym), then:
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(b) deg(yo) < (W(Yo---ym) — 2)(d’ — 1)d/2.
Proof. First we consider the special case when d = m. Since the family yo, y1, ..., Ym is
irreducible, d = d = m and yy = Z;’Ll ¢;y; with 0 # ¢; € F. Applying Theorem 3.1, we
obtain that

deg(yo) < deg(ym) < —(m = 1)m + >3- e pr(p) DalC1y1; s Cm¥Ym)-

Now we use that Ay (c1y1, ..., Cm¥Ym) < (m — 1)m/2 for all @ € P(F) and that in the
case deg(yy) = - -+ = deg(y,,) we have

A (C1y1s ooy EmYm) = min(deg(ym) — deg(yo), m — 1) < deg(ym) — deg(yo)

to obtain the theorem.

Now we consider the general case. Note that y; # 0 for all js because of the irre-
ducibility condition. We proceed by induction on m. If m = 2, then either d = 2 and we are
done by the special case above or d = 1 and all y; are constants, so both our conclusions
say that 0 < 0 which is true. Assume now that d < m > 3.

By the irreducibility condition, we can write yg as a linear combination of yi, ..., Y.
Dropping js with zero coefficients, we obtain a minimal Iy C {0, 1, ..., m} containing 0 with
2 <card(ly) <d +1<d+1 < m. The corresponding family {yé : j € Ip} is an irreducible
family. Let {y; : j € I} be an irreducible family containing Iy and with maximal possible
card(I;) < m. Set m’ = card(l;) —1,Vi = .., Fy;,dy = dim(V1), and 2z, = ged(V4).

By the induction hypothesis,

J€lL

deg(yo/=1) < (W(]] (w5/21) = e)da(d —1)/2
Jje€ly (42)

< (v(yoy1--Ym) — €)di(d’ —1)/2

where e = 2 when deg(y;) = ... = deg(ym ), and e = 1 otherwise.

When z; = 1, e.g., d’ = d, we are done. In general, we need an upper bound for deg(z)
to finish the proof. Let Iy be the complement of I in {0,1,...,m} and V5 = > Fy;.
By the irreducibility condition, V3 N V5 # 0.

Let 0 # 2z = Zje[’ c;y; € Vi NV be a vector with the least number of nonzero
coefficients when written as a linear combination of {y; : j € I} with minimal possible
number card(I”) of nonzero coefficients, where I’ C I5 and ¢; € F. This relation is minimal,
hence I; U I’ is irreducible. By the maximality of Iy, we have I’ = I5. Thus, my =
card(Iz) = dim(I3) =d —dy = m —my < d'. Set zo = ged(V2). Note that ged(z1, 22) = 1.

Applying Theorem 3.1, we obtain that

JE€I>

deg(z1) < deg(z/2z2) < max(deg(y;/22) : j € I2)

S —(m2 — 1)m2 + Z Aa(ijj/Zg . ] € Ig). (43)
acPL(F)

Now we use different upper bounds for
Aa(ijj/ZQ 1] € IQ) = Aa(ijj 1] € IQ)
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in (4.3) for different o € P(F). When « is not a zero of (2/22)yo...ym NOr @@ = 00, We
have Ay (cjy; : j € I2) = 0.
When « is a zero of yg...y,,, we use that

Aa(ijj 1 j € IQ) < (mg — 1)m2/2 < (d— d1>(d/ — 1)/2.

We use the same bound when o = 0o, unless deg(y;) = ... = deg(y.,) in which case we use
the following more precise bound:

A (cjyj = j € Iz) = min(mg — 1, max(deg(y;) : j € I2) — deg(z/22))

< max(deg(y;) : j € I2)— deg(z1).

Finally, when « is a zero of z/z9 but not a zero of yg...4,,, we use that

Auolcjy; : j € Iz) < ordy(2/22) = ordg(2)— orde(21).

Substituting these bounds to (4.3), we obtain that

deg(1) < deg(2/22) < (Vo) — €)(d — dy)(d' — 1)/2.

Adding this to (4.2), we obtain the conclusions of the theorem.

Remark. Our Theorem 4.1(a) improves the main result of [Z], (see (4) on page 88
there) with g = 0. The number y in [Z] is our d, and we replaced p(pu —1)/2 in the upper
bound of [Z] by d'(d —1)/2 < d(d —1)/2. The number S in [Z] is our v(yg...ym) + 1 when
S # 0; when S = 0 all terms are constant and v(yg...4Y,,) = 0. Our Theorem 4.1(b) shows
that S in [Z] can be replaced by S —1 in the case when all degrees are the same. Our proof
followed those of [BM] and [Z].

We neither stated nor proved extensions of our results to the case of arbitrary genus g
although there are no difficulties in doing this. The number S in [BM], [Z] can be replaced
by the number S’ < S of places where not all ord,(y;) are the same.

Our next result is similar to Theorem B of [BM] (in the case g = 0). For any nonzero
polynomials yo, ..., ym € F[t] and any o € PY(F) let u(a) + 1 be the number of js with
minimal value of ord,(y;) (over 0 < j < m). Note that 1 < p(a) < m. When m > 1 and
either yo = y1 + -+ + ym or a family yo, ..., Yy, is irreducible, we have 1 < p(«) for all a.
When ged(yo, ..., Ym) = 1, the minimal value is 0 for all @ € F. For a = oo, u(c0) is the
number of js with maximal deg(y, ).

Theorem 4.4. Let m > 2,y; € F[t],ged(y1, ..., Ym) = 1, and yo, y1, ..., Ym be an irreducible
family. Let d be the dimension of Fy; + -+ Fy,, over F and let d' < d be as above (i.e.,
d' + 1 is the mazimal cardinality of the minimal sets). Then

deg(yo) < (' — 1) 3271, v(y))-

If either d = m or the index 0 belongs to a minimal set Iy with card(Iy) = d’', then
deg(yo) < —d'(d' —1)/2+ (d' —1) 372, v(y;)-
Proof. We follow closely the proof of Theorem 4.1.

Case 1:d = m. In this case d = d = m and yg = Z;nzl c;y; with 0 # ¢; € F. So our
statement follows from Theorem 3.1 because

An(C1yny ey CmYm) < m(m —1)/2 for a = oo and

Ao(C1yty ooy CmYm) < (m — 1) Z;'n:() sign(ord, (y;))
for all a € F.

Case 2: the index 0 belongs to a minimal set Iy with card(ly) = d'.
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We proceed by induction on m. If m = 2, then either d = 2 and we are done by Case
1 ord =1 and all y; are constants, so our conclusion is that 0 < 0. Assume now that
d<m>3.

Let Iy, I1, I3, dy, mq, 2, 21, 22, ms be as in the proof of Theorem 4.1 with the following
additional condition: we choose Iy 3 0 with card(ly) = d’, so card(ly) > d'.

By the induction hypothesis,

deg(yo/=1) < —(d' = )d'/2+ (d' = 1) Y v(y;/=1). (4.5)

J€l

If z; = 1, we are done because the right hand side in (4.5) is less than the right hand side in
the conclusion of Theorem 4.4. Let now z1 # 1. Then d’ > dy > 2. We set I3 = [bU{m+1}
and Y, +1 = z. Applying Theorem 3.1, we obtain that

deg(z1) < deg(z/22) <do Y w(y;/ze) < (d = Dw(z/z) +(d —1) Y v(y).  (4.6)

JEI3 JE€I>

Now it remains to add (4.5) and (4.6) and to observe that v(z/z2) < v(z1) and

Zje]l V(yj/21>+y(zl> SZjejl V(?Jj)- -

General case. Set M = max(deg(y1),..., deg(ym)). We pick a § € F' which is not a
zero of y,...y, and replace y; = y,(t) € F[t] by z; = t"y(1/t + ). Note that the family
20, 21y -y Zm € F[t] is irreducible, ged(z1, ..., 2m) = 1, deg(z;) = M for all j,v(y;) = v(z;)
for at least two js, and v(y;) < v(z;) < v(y;) + 1 for all j.

Now we can use Case 2 with y; replaced by z; and obtain that

deg(yo) < M =deg(z0) <m —2—d'(d' = 1)/2+ (d' — 1) 37, v(z))

—m—2—d(d —1)/2+ (& — 1) X vl(y):

If m—2—d(d —1)/2 <0, we are done. Otherwise we replace z; = z;(t) by z;(t")
with a large integer N and obtain that MN <m—2—-d'(d'—1)/24+ M (d'—1) Z;ﬁ:o v(y;).

Dividing both sides by N and sending N to oo, we obtain the conclusion of the
theorem.

Corollary 4.7. Under the conditions of Theorem 4.1,
deg(yo) < (d—1) X270 v(y;)-

If not all y; are constant, then
deg(yo) < (m —1) 370 o v(y;)-

If not all y; are constant and they are pairwise coprime, then

deg(yo) < (d' — 1) >0 v(y;))-
Proof. This follows from Theorem 4.1 using the following observations. If all y; are
constant, i.e., d = 1, then the conclusion is that 0 < 0. When y; are constant and they are
pairwise coprime we can apply Theorem 3.1 or Theorem 4.1 to a minimal set containing
the index 0.

Our next result is similar to Theorem B of [BM] (in the case g = 0). For any nonzero
polynomials yo, ..., ym € F[t] and any o € PY(F) let p(a) + 1 be the number of js with
minimal value of ord,(y;) (over 0 < j < m). Note that 1 < p(a) < m. When m > 1 and
either yo = y1 + -+ + Yy or a family yo, ..., Yy, is irreducible, we have 1 < u(«) for all a.
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When ged(yo, ..., Ym) = 1, the minimal value is 0 for all a € F. For a = oo, ju(00) is the
number of js with maximal deg(y, ).

Theorem 4.8. Under the conditions of Theorem 4.1,
deg(yo) < 2d' —d? —d+ 3 e prpy(d(d —1)/2 = p/ () (W' (o) — 1)/2),
where p/' (o)) = max(d — d',d — m + p(a)).
Proof. The proof is similar to those of Theorems 4.1 and 4.4 and we leave it to the reader.

5 NONZERO CHARACTERISTIC CASE
Now let p = char(F) # 0. It was shown in [P, p.54] that the equation

xp +axy =xf + ) (5.1)

has nontrivial solutions for every n. When n is odd or F' is algebraically closed, (5.1) is
essentially the same equation as (1.1) with m = 3.

In [V2] it is shown that for every n, every polynomial in F'[t] is the sum of at most
n(p) n-th powers provided that F' is an algebraically closed field with char(F) = p # 0
and n is coprime with p. Here n¢,) = [[(a; +1) —1 < n, where the a; are the digits of
n in base p. Moreover [V2] gives solutions with pairwise coprime z;. It follows that (1.1)
has nontrivial solutions (with an arbitrary zo) when m > S(n,p), where S(n,p) is the
minimum of (nk),) over all natural numbers k. Obviously, S(n, p) could be small for very
large n. For example, S(n,p) = 3 if n > 2 divides p* + 1 for some k. So for all such n
and any g, the equation (1.1) with m = 3 has nontrivial solutions in F'[t], where F is an
algebraic closure of F.

Thus, when p # 0, no upper bound on m prevents the existence of indecomposable
primitive nonconstant solutions of (1.1) in F'[t], and one cannot place any bound of the
form m < f(n) with f(n) — oo as n — oo to prevent pairwise coprime nonconstant
solutions. One can hope to obtain a bound of the form n < f(S(n,p)) (under additional
conditions on solutions).

The main trouble is that the determinant D in Section 3 may vanish even when
Y1, .-, Ym are linearly independent over F. In fact [K] it vanishes if and only if y1, ..., y,, are
linearly dependent over F(¢P). If D # 0, then it is easy to obtain much sharper conclusions
(cf. the case k =1 of the next proposition).

For any integer k > 1, we set Fj = F(tpk). For any natural number n = > s;p’
written in base p, we set mod(m, p¥) = 22:01 s;p’. For any nonzero polynomial z = z(t) =
c[1(t — @)™ € F[t], where 0 # ¢ € F,a € F,n(a) = ord,(2), and any integer k > 1,
we define degy(z) = > mod(n(a),p). It is a nondecreasing function of k and degy(z) =
deg(z) when p*¥ > deg(z). We denote by vj(z) the number of exponents n(a) which are
not divisible by p*. In particular, v(z) = v1(2).

Proposition 5.2. Let m > 2 and yo = y1 + -+ + Ym with y; € F[t]. Suppose that
gcd(Yo, -y Ym) = 1. For some integer k > 1 assume that yi, ..., ym are linearly independent
over Fy,. Then

deg(yo) < —m(m —1)/2+ 377 degy(y;) < —m(m —1)/2+ (p* = 1) X7, vie(y;)-

Moreover, in the case k =1,
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deg(yo) < —m(m —1)/2+ (m —1) 377 v(y;)-
Proof. The condition of linear independence implies that p* > m. We write y; = y;(t) =

Z’;k:gl yj’s(t)pktS with y; s(t) = y;,s € F[t]. Such a representation is unique which is easy
to see by induction on k. Also by induction on k it is easy to see that

orda (5,6) > (orda (y;)—mod(orda(y; ), p*))/p*
for all a, j,s. Now we consider the matrix (1/;,s)1<j<m,0<s<pr—1- Its rank is m. We choose
a square m by m submatrix with nonzero determinant Dy € F[t]. Since p* deg(y; s) + s <
deg(y;), we have deg(y;,s) < (deg(y;) — s)/p" and

deg(Do) < (—m(m —1)/2+ 3771, deg(y;))/p".

On the other hand,

orda (Do) > Y (orda (y;)~mod(ord, (), o)) /p*
for every a € F which is not a zero of yo. Moreover this inequality also holds for every
a € F which is a zero of yg, because Dy = D;, where D; is the determinant of the matrix
obtained by replacing y; s by yo.s, and 0 # ¢; € F[tpl] C F[tpk] for all j.

Thus,

S0 (dog(yy)— degi(y;)/p* = S0 e p(orda(y;) —mod(orda (y,). p))/p*

< Y aer 0rda Do = deg(Do) < (—m(m —1)/2+ 377, deg(y;))/p",
hence we obtain the first conclusion.

Now we consider the case k = 1. Note that the linear independence implies that m < p
and that the Wronskian Dy = det(yj(.z))ogjgm,lgigm_l # 0. It is clear that the row j is
divisible by (t — a)™ with

n = ords(y;)— (the last digit of ord,(y;) in base p) < ord,(y;) —p+1

< orda(y;) — m+ 1.

Since coDy = ¢;Dj, where D; is the determinant obtained when we replace y; by yo, it
follows that

deg(Do) > —(m — v(y;) + 371, deg(y;).

On the other hand,

deg(Do) < —m(m —1)/2+ 377", deg(y;).

Comparing this upper bound for deg(Dy) with the above lower bound and taking into
account that deg(y;) = deg;(y;), we obtain the conclusion.

Remarks. We do not pursue in this paper improvements of the proposition similar to
Theorem 3.1.

We could prove the proposition using divided derivatives (cf. [GV], [Wa]).

If y1,...., ym are linearly independent over F' then they are linearly independent over
F}, for all sufficiently large k. However the proposition gives a meaningful upper bound on
deg(yo) only when k is small.

The proposition can be easily generalized to the situation when every linearly inde-
pendent over F' subsequence in yy, ..., Y., stays linearly independent over F}. This is always
true for sufficiently large k, but the larger the k the weaker the conclusion.
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