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ABSTRACT

If a sum of univariate polynomials is zero, then there are
restrictions on the multiplicities of zeros of the polynomials.

1 INTRODUCTION

The Euler-Fermat equations are

xn1 + · · · . + xnm = xn0 (1.1)

with unknown xi. In 1769 Euler conjectured that (1.1) has no positive integral solutions
when m < n. This generalizes both his result for n = 3 and Fermat’s Last Theorem.
However his conjecture was refuted for m+1 = n = 5 [LP] and then for m+1 = n = 4 [E].
It is still unknown whether (1.1) has solutions with m + 1 = n ≥ 6 or with m = 3 = n− 2.
On the other hand, (1.1) has positive integral solutions for m ≥ G(n) where G(n) is a
number related with the Waring problem, whose best known bound for large n is G(n) ≤
n(log n + log log n + O(1)) [Wo].

In this paper, we are looking for solutions in F [t] rather than in the integers. Here
F is a field of characteristic p ≥ 0 and F [t] is the polynomial ring in a variable t with
coefficients in F.

When char(F ) = 0, it is known that (1.1) has no nontrivial solutions in F [t] when m <
(n/8)1/2 [NS]. Nontrivial here means primitive, indecomposable, nonconstant. A solution
to (1.1) (or to the more general equation (1.2) below) is called primitive if gcd(x0, x1, ..., xm)
= 1. We call it indecomposable if no partial sum on the left hand side is 0. We call it
nonconstant if not all xi belong to F.

When p = char(F ) 6= 0, given any solution of (1.1) we can obtain solutions of a similar
equation with the same m but n replaced by np, by taking the p-th power. So in the case of
finite characteristic we can have nontrivial solutions of (1.1) with a small m and arbitrarily
large n. Moreover, it is known that (1.1) may have nontrivial solutions with m = 3 and
all n (including all n coprime with p) [P]. Furthermore, even for any fixed x0, (1.1) with
m = 3 may have nontrivial solutions with arbitrarily large n coprime with p [V2]. See
Section 5.
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Returning to the case p = 0, we consider equations more general than (1.1), the
generalized Fermat equations

c0x
n0
0 + · · · . + cmxnmm = 0, (1.2)

in m + 1 unknowns xi with given ni ≥ 2 and nonzero ci ∈ F. Our goal is to prove that
(1.2) has no nontrivial solutions in F [t] when ni are ‘large’ in a certain sense.

It is stated in [NS, p.486] where F = C, the complex numbers, that when m ≤
(n/8)1/2, the equation (1.1) has no solutions in F [t] with nonconstant xi which are pairwise
coprime. Actually, the method of [NS] works when we relax the above condition to the
following condition: the solution must be be primitive, indecomposable and nonconstant.
Moreover, this method, involving the Wronskian of xi, works to prove the following:

Theorem 1.3. Let char(F ) = 0. Then (1.2) has no nontrivial solutions in F [t] when∑
1/nj ≤ 1/(m − 1) and 0 6= cj ∈ F. In particular, (1.1) has no nontrivial solutions in

F [t] when n ≥ m2 − 1.

Thus, this relaxes the condition m ≤ (n/8)1/2 of [NS] to the condition m ≤ (n+1)1/2.
Proposition 5.2 of [DG] is our Theorem 1.3 with the redundant condition that all xi are
pairwise coprime.

On the other hand, it is shown in [NS, p.486] (with attribution to Molluzzo) that (1.1)
has a primitive nonconstant solution with an arbitrary x0 when m = [(4n+1)1/2] and F =
C. Moreover, this solution works for any algebraically closed field F of any characteristic.
It is still unknown even for F = C whether (1.1) may have nontrivial solutions when
(n + 1)1/2 < m < [(4n + 1)1/2].

We prove Theorem 1.3 after improving upon results of [Vo], [BM], and [Z] generalizing
the (abc)-theorem (see the next section). An interesting question outside the scope of the
present paper is to establish a bound on the number of nontrivial solutions of (1.2) with
given ci ∈ F [t] for ‘large’ ni. Results in this direction are known when char(F ) = 0 (see
[B], [BS], [Mu1], [Mu2]) or char(F ) 6= 0 and m = 2 [Vo2].

2 THE (abc)-THEOREM AND ITS GENERALIZATIONS

For any nonzero polynomial f = f(t) ∈ F [t] let ν(f) denote the number of α ∈ F̄ , an
algebraic closure of F, whose multiplicity in f is not divisible by p. When p = char(F ) =
0, ν(f) is just the number of distinct zeros of f.

Theorem 2.1. If a + b = c in A = F [t] with p = 0, gcd(a, b) = 1 and (abc)′ 6= 0 then
deg(c) ≤ ν(abc)− 1.

This well-known theorem (see [Ma], [L]) implies that the Fermat equation xn+yn = zn

has no nontrivial solutions in A = F [t] when p = 0 and n ≥ 3 (this was known before [NS],
but in [NS] it was proved for n ≥ 32). It also has other applications [Mu1].

For a, b, c as in Theorem 2.1, one can ask whether there are restrictions on N =
ν(abc), s = deg(c) other than the restrictions s ≤ N − 1 given by the theorem and the
obvious restrictions 0 ≤ s and N ≥ 2. It can be shown by examples that the answer is
“no” when char(F ) = 0, while the complete description of all possible pairs (s, N) in the
case of p 6= 0 seems to be a difficult open problem.
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Since we can switch a or b with -c in Theorem 2.1, its conclusion can be written as
follows: max(deg(a), deg(b), deg(c)) ≤ ν(abc) − 1. It follows from our Theorem 3.1 that
min(deg(a), deg(b), deg(c)) ≤ ν(abc)− 2. On the other hand, it is clear that

ν(abc) ≤ deg(a) + deg(b) + deg(c)) ≤ 3 max(deg(a), deg(b), deg(c)).
When char(F ) = 0, it can be shown by examples that for any given integers M, s, N

such that 0 ≤ s ≤ M ≤ N − 1 and s ≤ N − 2 ≤ s + 2M − 2 there are a, b, c ∈ F [t] such
that deg(a) = s, deg(b) = deg(c) = M, a + b = c, and ν(abc) = ν(a) + ν(b) + ν(c) = N. A
more general open problem is to describe all possible 6-tuples (deg(a), ν(a), deg(b), ν(b),
deg(c), ν(c)). This seems to be a difficult problem even when char(F ) = 0.

Here is our generalization of Theorem 2.1 in the case char(F ) = 0:

Theorem 2.2. Let m ≥ 2, yj ∈ A = F [t], y1 + · · · + ym = y0, gcd(y1, ..., ym) = 1,
char(F ) = 0, not all yj are constants, and no nonempty subsum of y1, ..., ym vanishes.
Then:

(a) deg(y0) < (m− 1)(
∑m
j=0 ν(yj)),

(b) deg(y0) ≤ (ν(y0...ym)− 1)m(m− 1)/2.

We will obtain the theorem in Sections 3 and 4 below as a corollary of more precise
results. Namely, we will prove the theorem first in the case when y1, ..., ym are linearly
independent over F (see Theorem 3.1 below which is an improved version of Theorem
2.2 in this case) and then in the case when y1, ..., ym are linearly dependent over F (see
Theorem 4.1 below which is a more precise version of Theorem 2.2(b) and Corollary 4.8
below which is a more precise version of Theorem 2.2(a)).

Part (b) was first stated in [Ma], first proved in [BM, Theorem B] (with ν(y0...ym)
instead of ν(y0...ym)− 1) and then proved in a more precise form in [Z]. In the case when
y1, ..., ym are linearly independent over F, Theorem 2.2 is a particular case (with g = 0) of
results of [BM] and [Vo1] (although part(a) is not stated there explicitly). It is unknown
whether the number m(m− 1)/2 in (b) can be replaced by a smaller number when m ≥ 4.
It is proved in [BB] that the correct number must be at least 2m− 3 and conjectured (and
proved for m = 3) that the number is 2m− 3.

In the case m = 2 then both (a) and (b) coincide with Theorem 2.1 with p = 0, because
in this case we have ν(y0y1y2) = ν(y0) + ν(y1) + ν(y2) and 1 = m− 1 = m(m− 1)/2.

Note also that (a) implies Theorem 1.3. Indeed, by obvious symmetry of the equation
y1 + · · ·+ ym = y0, the number deg(y0) in Theorem 2.2 can be replaced by deg(yj) for any
j and hence by M = maxj deg(yj). Dividing (a) by M, we obtain that

1 < (m− 1)
m∑

i=0

ν(yi)/M ≤ (m− 1)
m∑

j=0

ν(yj)/ deg(yj).

The number deg(yj)/ν(yj) is the arithmetic mean of multiplicities of zeros of yi while
(m + 1)/

∑m
i=0 ν(yi)/ deg(yi) is the harmonic average of deg(yj)/ν(yj).

Corollary 2.3. Under the conditions of Theorem 2.2, the harmonic mean of
deg(yj)/ν(yj) is less than m2 − 1.

This corollary generalizes Theorem 1.3. (Applying the corollary to the case y0 =
−c0x

n0 , yi = cjx
nj
j for j ≥ 1, we obtain Theorem 1.3.)
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3 IMPROVING UPON THEOREM 2.2
IN THE LINEARLY INDEPENDENT CASE

In this section we assume that char(F ) = 0. Our main goal is to prove Theorem 2.2
in the case when y1, ..., ym are linearly independent over F. In fact we state and prove a
more precise version of Theorem 2.2, Theorem 3.1, involving the orders ordα(yj) We also
obtain some known results as corollaries of Theorem 3.1.

First of all, for any integer d ≥ 1 and any sequence k1, ...., kd of integers we will define
its “diversity” ∆(k1, ..., kd), which is an integer between 0 and (d − 1)d/2. Namely, we
consider the set X of all sequences l1, ...., ld of distinct integers such that lj ≥ kj for all
js. Then ∆(k1, ..., kd), our diversity of k1, ...., kd, is the maximal value of (d − 1)d/2 −∑d
j=1(lj − kj). In other words, we compute the minimal total increase to make all kj

distinct and then subtract it from its maximal possible value, (d − 1)d/2. It is clear that
0 ≤ ∆(k1, ..., kd) ≤ (d − 1)d/2. (To see the first inequality, note that {kj + j} ∈ X when
{kj} is nondecreasing.) It is also clear that ∆(k1, ..., kd) = 0 if and only if {kj} is a constant
sequence and that ∆(k1, ..., kd) = (d− 1)d/2 if and only if all kj are distinct. Here are two
other easy upper bounds for ∆(k1, ..., kd):

∆(k1, ..., kd) ≤
d∑

j=1

min(j − 1, kj − k1)

when k1 ≤ ... ≤ kd and

∆(k1, ..., kd) ≤ (d− 1)d/2−
∑

s

(ms − 1)ms/2,

where ms is the total number of js such that kj = s.
Now let y1, ..., yd ∈ F [t] be linearly independent over F, and we set y0 = y1 + · · ·+ yd.

For every α ∈ F̄ let k0 ≤ ... ≤ kd be the numbers ordα(yj) (0 ≤ j ≤ d) written in
nondecreasing order. We set

∆α(y1, ..., yd) = ∆(k1, ..., kd).

Similarly, let k0 ≤ ... ≤ kd be the numbers {ord∞(yj) = − deg(yj) : 0 ≤ j ≤ d}
written in nondecreasing order. We set

∆∞(y1, ..., yd) = ∆(k1, ..., kd).

Thus, ∆α(y1, ..., yd) is defined for all α ∈ P 1(F̄ ) = F̄ ∪{∞}. For almost all α (all but
finitely many) ordα(yj) = 0 hence ∆α(y1, ..., yd) = 0.

Theorem 3.1. Let m ≥ 2, yj ∈ A = F [t], y1 + · · · + ym = y0, gcd(y1, ..., ym) = 1,
char(F ) = 0, and assume that y1, ...., ym are linearly independent over F. Then

deg(y0) ≤ −(m− 1)m +
∑

α∈P 1(F̄ )

∆α(y1, ..., ym)
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≤ −(m− 1)m/2 + (m− 1) min(ν(y0...ym)m/2,

m∑

j=0

ν(yj)).

Note that ∆α(y1, ..., ym) 6= 0 if and only if either α is a zero of y0...ym (recall that
gcd(y1, ..., ym) = 1) or α =∞ and not all deg(yj) are the same. Therefore

deg(y0) ≤ (card(S)− 2)m(m− 1)/2

when S is a finite subset in P 1(F̄ ) and all yj are units outside S. Thus, our Theorem 3.1
contains Theorem 4 of [Vo] (which is essentially the same as Corollary 1 of [BM]) with g = 0.
Moreover ∆α(y1, ..., ym) ≤ (m− 1)m/2− (l− 2)(l− 1)/2 where l is the number of js with
ordα(yj) taking a fixed value. (In the case when this value is not minimal, (l− 2)(l− 1)/2
can be replaced by (l − 1)l/2.) Therefore our Theorem 3.1 contains Theorem A of [BM]
with g = 0. Moreover, the number S of places α where not all ordα(yj) are 0 in [BM] and
[Vo] can be replaced by the number S ′ ≤ S of places α where not all ordα(yj) are the
same.

Theorem 3.1 gives Theorem 2.2 in the case when the polynomials y1, ...., ym in Theo-
rem 2.2 are linearly independent (just use that ∆α(y1, ..., ym) ≤ m(m − 1)/2 for all α to
get Theorem 2.2 (b) and that ∆α(y1, ..., ym) ≤ (m− 1){#j :ordα(yj) 6= 0}).

After Theorem 3.1 is proved we will obtain some known results as its consequences,
and then, in the next section, we use it to prove an improved version of Theorem 2.2,
Theorem 4.1.

To prove Theorem 3.1, we introduce orders of finite-dimensional F -subspaces of F [t].
Let V be an F -vector subspace of A = F [t] of dimension d. Assume that 1 ≤ d <∞.

For any α ∈ F̄ , we can choose a basis v1, ...., vd of V such that ordα(v1) < ... <ordα(vd).
These numbers ordα(vi) are independent of the choice of such a basis. We define ordα(V )
by

ordα(V ) = −(d− 1)d/2 +
∑d
i=1ordα(vj).

Clearly, ordα(V ) ≥ 0. For any basis y1, ...., yd of V we have

ordα(V ) ≥ −(d− 1)d/2 +
∑d
i=1ordα(yi).

This is because by addition operations with the polynomials yj we can make all
ordα(yj) distinct while increasing them or keeping them the same. To get a better bound,
we can replace one of yj with minimal ordα(yj) by y0 = y1 + · · ·+ yd. This proves a more
precise inequality:

Lemma 3.2. Let V be as above and y1, ...., yd a basis of V over F. Then, for all α ∈ F̄ ,
ordα(V ) ≥ −∆(ordα(y1), ...,ordα(yd)) +

∑d
j=1ordα(yj)

and
ordα(V ) ≥ −∆α(y1, ..., yd) +

∑d
j=1ordα(yj)−min(ordα(y0), ...,ordα(yd)).

Also we can choose a basis v1, ...., vd of V such that deg(v1) < ... < deg(vd). The
numbers deg(vi) are independent of the choice of such a basis. We set

deg(V ) = −d(d− 1)/2 +
d∑

i=1

deg(vi)
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and

ord∞(V ) = −d(d− 1)/2 +
d∑

i=1

ord∞(vi),

where ord∞(vi) = − deg(vi).

Clearly, deg(V ) ≥ 0 and deg(V )+ord∞(V ) = −d(d− 1). For any basis v1, ...., vd of V

we have deg(V ) ≤ −d(d− 1)/2 +
∑d

i=1 deg(vi). Moreover, we have the following analogue
of Lemma 3.2:

Lemma 3.3. The conclusions of Lemma 3.2 also hold for α =∞.

Proof. It is similar to that of Lemma 3.2. Also Lemma 3.3 can be reduced to Lemma 3.2
by a change of variable.

Proposition 3.4. deg(V ) =
∑
α∈F̄ ordα(V ).

Proof. We pick a basis v1, ...., vd of V and consider the Wronskian D = det(v
(j)
i ). It is

a nonzero polynomial in F [t], and it is determined by V up to a nonzero scalar factor.
Choosing vi as in the definition of deg(V ), we see that deg(D) = deg(V ). Indeed, writing
the determinant D as a sum of d! terms, we see that every nonzero term has degree deg(V )
and that the sum of coefficients in this degree is, up to a nonzero scalar factor equal to the
product of leading terms in vi, the determinant of the matrix (

(
ki
j−1

)
)1≤i,j≤d which is, up

to the factor (1!...(d− 1)!)d, the Vandermonde determinant det(kji ) =
∏
i<j(ki − kj) 6= 0

where ki = deg(vi).

On the other hand, choosing vi as in the definition of ordα(V ), we see that ordα(D) =
ordα(V ) for all α ∈ F̄ . Indeed writing the determinant D as a sum of d! terms, we see that
every term is divisible by (x− α)ordα(V ) and that the sum of the terms of order ordα(V )
is, up to a factor of order 0 equal to the product of vi/(x − α)ordα(vi), the determinant
of the matrix (

(
ki
j−1

)
)1≤i,j≤d which is, up to the factor (1!...(d− 1)!)d, the Vandermonde

determinant det(kji ) =
∏
i<j(ki − kj) where ki =deg(vi).

Now deg(V ) = deg(D) =
∏
α∈F̄ ordα(D) =

∏
ordα(V ).

Remark. When d = 1, the proposition says that deg(D) =
∑

α∈F̄ordα(D) for every
nonzero polynomial D ∈ F [t].

Remark. As a corollary of the proposition,
∑
αordα(V ) <∞.

Now we are ready to prove Theorem 3.1. Let d0 ≤ d1 ≤ ... ≤ dm be the degrees of
yj(0 ≤ j ≤ m) written in nondecreasing order. Then dm−1 = dm ≥ m. By Lemma 3.3
with d = m,

deg(V ) = −m(m− 1)− ord∞(V ) ≤ −m(m − 1) + ∆∞(y1, ..., ym)− dm +

m∑

j=0

dj .

On the other hand, since gcd(y1, ...., ym) = 1, for any α ∈ F̄ we have

min(ordα(y1), ...,ordα(ym)) = 0

and, by Lemma 3.2 with d = m,
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ordα(V ) ≥ −∆α(y1, ..., ym) +
m∑

j=1

ordα(yj).

Switching, if neccessary, −y0 with a polynomial yj such that yj(α) 6= 0, we have

ordα(V ) ≥ −∆α(y1, ..., ym) +

m∑

j=0

ordα(yj).

Taking the sum over all α ∈ F̄ and using Proposition 3.1 and the fact that deg(yj) =∑
ordα(yj) for each j, we obtain

deg(V ) =
∑
α∈F̄ ordα(V ) ≥ −∑α∈F̄ ∆α(y1, ..., ym) +

∑m
j=0 dj.

Comparing these upper and lower bounds for deg(V ) and cancelling
∑m
j=0 dj , we

obtain the conclusion of Theorem 3.1.

Here are some consequences of Theorem 3.1.

Corollary 3.5 (cf. Theorem on p.480 of [NS]). Let n ≥ 3 and
∑m
j=1 xnj = t in F [t] with

char(F ) = 0. Then m2 −m > n.

Proof. Without loss of generality, we can assume that F is algebraically closed and that
xn1 , ..., xnm are linearly independent (otherwise, t is a sum of a smaller number of n-th
powers). Also gcd(xn1 , ..., xnm) = 1 because this is an n-th power dividing t and n ≥ 2. Let
M = max(deg(x1), ..., deg(xm)). By Theorem 3.1,

Mn ≤ −(m− 1)m/2 + (m− 1)(ν(t) +
m∑

j=1

ν(xj))

≤ −(m− 1)m/2 + (m− 1)(1 + Mm) < Mm(m− 1),

because ν(yj) = ν(xj) ≤ deg(xj) ≤M, ν(t) = 1, and m ≥ 3 when n ≥ 3.
Remark. The condition n ≥ 3 is necessary, and it is implicit in the theorem on p.480

of [NS], see p.479 or 481 in [NS].

Corollary 3.6. Let n ≥ 2 and
∑m

j=1 xnj = txn0 in F [t] with x0 6= 0 and char(F ) = 0. Then

m2 > n + 1.

Proof. Without loss of generality, we can assume that F is algebraically closed, that
xn1 , ..., xnm are linearly independent, and that gcd(x1, ..., xm) = 1. Let

M = max(deg(x1), ..., deg(xm)).

By Theorem 3.1, Mn < (M(m + 1 + 1))(m − 1)−m(m − 1)/2, hence n < m2 − 1 when
n ≥ 3. When n = 2, notice that m ≥ 2.

Remark. This improves upon the theorem on p.483 of [NS] which asserts that m2 >
n/8.

Theorem 3.7. Let n ≥ 2 and xn1 + · · ·+ xnm = x0 in F [t] with char(F ) = 0. Assume
that m ≥ 1 and xn1 , ..., xnm are linearly independent over F. Then

deg(x0) ≥M(n−m2 + m) + (m− 1)m/2,
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where M := max(deg(x1), ..., deg(xm)).

Proof. Without loss of generality, we can assume that F is algebraically closed, that m ≥ 2
(the case m = 1 is trivial), that gcd(x1, ..., xm) = 1 (the general case follows easily from the
primitive one), that n > m(m− 1)/2 (otherwise there is nothing to prove), that xn1 , ..., xnm
are linearly independent over F (otherwise the number m can be reduced), and that M =
deg(xm). Using Theorem 3.1 with y0 = −xnm, ym = −x0, yj = xnj for j ≤ m − 1 and the
fact that

∆α(y1, ..., ym) ≤ (m− 1)(
∑m−1
j=0 sign(ordα(yj))+ordα(ym)

for all α ∈ F̄ , we obtain that

nM = deg(y0) ≤ deg(x0) +
m−1∑

j=0

ν(yj)−m(m− 1)/2

≤ deg(x0) + (m− 1)mM −m(m− 1)/2,

hence deg(x0) ≥M(n−m2 + m) + m(m− 1)/2.
Remark. Our theorem is close to the theorem on p.481 of [NS] and has the same

conclusion as the second conclusion of that theorem. The condition that n ≥ 2 is implicit
in [NS] (without this condition the theorem is not true). We relaxed the condition of
[NS] that all xj are nonconstant and nonlinear to the condition that not all of them are
constant. We imposed an additional condition that xn1 , ..., xnm are linearly independent
over F to prevent counterexamples to the theorem of [MS] like the following two:

(i) m = 2, any n ≥ 2, any M ≥ 1, x1 = tM , x2 = −tM , x0 = 0;
(ii) m = 2, any n ≥ 3, any M ≥ 1, x1 = tM , x2 = tM , x0 = 2tM .
The condition is missing in [NS] by mistake. When F = F̄ , this condition is weaker

than the condition that x0 is not a sum of a smaller than m number of n-th powers in
F [t]. It could also be replaced by the condition that x0 is not divisible by any nonconstant
n-th power in F [t].

The first conclusion of the theorem of [NS] is that deg(x0) ≥ n−(m−1)m/2. However,
this conclusion is stated twice on the same page as deg(x0) ≥ n− (m− 1)m, which follows
from our theorem because either M = 0 and m = 1 or M ≥ 1. Also the theorem implies
that deg(x0) ≥ n − (m − 1)m when either n ≥ m2 − m or M = 1. By the way, when
M = 1 it is easy to prove that in fact deg(x0) ≥ n −m + 1, and that this bound cannot
be improved when n ≥ m− 1 and F = F̄ .

Theorem 2.2(a) with linearly independent y1, ..., ym (which we have obtained from
Theorem 3.1) allows us now to obtain Theorem 1.3 in the following two cases (in general,
Theorem 1.3 follows from Theorem 2.2 which we will obtain from Theorem 4.4 below).

Corollary 3.8. The equation (1.1) has no nonconstant indecomposable primitive solutions
when n ≥ m2 − 1.

Proof. Consider such a solution of (1.1). Let M = max(deg(x1), ..., deg(xm)). If xn1 , ..., xnm
are linearly independent, then Theorem 3.1 via Theorem 2.2 (a) gives that Mn < (m +
1)M(m− 1).

If xn1 , ..., xnm are linearly dependent, we consider a linear relation of minimal length.
Permuting terms, we can assume that this relation is c1x

n
1 + · · ·+ cd+1x

n
d+1 = 0. If not all
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terms here are colinear, we divide this equality by the gcd and pass to F̄ to conclude that
n < d2 − 1 < m2 − 1. Otherwise, we also pass to F̄ and replace all terms by one term of
the form x′n and after dividing by the gcd we obtain an equation of the form (1.1) with
not all terms constant and with the same n but m replaced by m− d < m, hence we are
done by induction on m.

Corollary 3.9. The equation (1.2) has no nonconstant indecomposable solutions with
pairwise coprime terms when

∑
1/nj ≤ 1(m− 1).

Proof. Again either the terms are linearly independent and we are done by Theorem 3.1
or we can obtain a shorter equation of the same form form (passing, if necessary, to F̄ ).
Here we cannot divide by the gcd because this produces nonconstant coefficients, but we
do not need to do this because the terms are pairwise coprime.

4 IMPROVING THEOREM 2.2 IN GENERAL

Now we drop the condition about linear independence and prove a more precise version
of Theorem 2.2 involving the dimension d ≤ m of Fy1 + · · ·+ Fym and another number
d′ ≤ d which is defined below.

First we introduce two definitions which make sense for any sequence (family, mul-
tiset) y0, ..., ym of vectors in an F -vector space. Following [BM], a nonempty subset
I ⊂ {0, 1, ..., m} is called minimal if the corresponding family {yj : j ∈ I} of vectors
is linearly dependent over F but {yj : j ∈ J} is linearly independent over F for any proper
subset J ⊂ I. A linear relation is called minimal if the corresponding family of vectors is
minimal.

Clearly, card(I) ≤ d + 1 for any minimal set I. We define d′ + 1 to be the maximal
cardinality of the minimal sets. Thus, d′ ≤ d = dim(Fy0 + · · ·+ Fym).

In general not every index j needs to be an element of a minimal set. The condition
y0 = y1 + · · · + ym in Theorem 2.2 implies that every j is contained in a minimal set.
Namely, we can take a basis not involving j, write yj with respect to this basis, and drop
zero terms to obtain such a set. This condition, together with the condition of no vanishing
subsums of Theorems 2.2 and 4.1, implies that all linear relations between y0, y1, ..., ym
follow from minimal relations (Lemma 4 of [BM]).

We call a family (multiset) y0, ..., ym of vectors irreducible if for any partition I ∪
I ′ = {0, 1, ..., m} into nonempty parts, the corresponding vector subspaces

∑
j∈I Fyj and∑

j∈I′ Fyj have a nonzero intersection. For example, every minimal set gives an irreducible
family of vectors. Under the conditions of Theorem 2.2, the family y0, ..., ym is irreducible.
It can be shown that for every irreducible family z0, ..., zm of vectors there are nonzero
cj ∈ F such that yj = cjzj satisfy the conditions of Theorem 2.2. So the conditions of
the next two theorems are not really more general than those of Theorem 2.2 (but the
conclusions are stronger).

Theorem 4.1. Let m ≥ 2, yj ∈ F [t], gcd(y1, ..., ym) = 1, and y0, y1, ..., ym be an irre-
ducible family. Let d be the dimension of Fy1 + · · · + Fym over F and let d′ ≤ d be as
above. Then:

(a) deg(y0) ≤ (ν(y0...ym)− 1)(d′ − 1)d/2.
Furthermore, if deg(y1) = ... = deg(ym), then:
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(b) deg(y0) ≤ (ν(y0...ym)− 2)(d′ − 1)d/2.

Proof. First we consider the special case when d = m. Since the family y0, y1, ..., ym is
irreducible, d′ = d = m and y0 =

∑m
j=1 cjyj with 0 6= cj ∈ F. Applying Theorem 3.1, we

obtain that
deg(y0) ≤ deg(ym) ≤ −(m− 1)m +

∑
α∈P 1(F̄ ) ∆α(c1y1, ..., cmym).

Now we use that ∆α(c1y1, ..., cmym) ≤ (m− 1)m/2 for all α ∈ P 1(F̄ ) and that in the
case deg(y1) = · · · = deg(ym) we have

∆∞(c1y1, ..., cmym) = min(deg(ym)− deg(y0), m− 1) ≤ deg(ym)− deg(y0)

to obtain the theorem.
Now we consider the general case. Note that yj 6= 0 for all js because of the irre-

ducibility condition. We proceed by induction on m. If m = 2, then either d = 2 and we are
done by the special case above or d = 1 and all yj are constants, so both our conclusions
say that 0 ≤ 0 which is true. Assume now that d < m ≥ 3.

By the irreducibility condition, we can write y0 as a linear combination of y1, ..., ym.
Dropping js with zero coefficients, we obtain a minimal I0 ⊂ {0, 1, ..., m} containing 0 with
2 ≤ card(I0) ≤ d′+1 ≤ d+1 ≤ m. The corresponding family {y′j : j ∈ I0} is an irreducible
family. Let {yj : j ∈ I1} be an irreducible family containing I0 and with maximal possible
card(I1) ≤ m. Set m′ = card(I1)− 1, V1 =

∑
j∈I1 Fyj, d1 = dim(V1), and z1 = gcd(V1).

By the induction hypothesis,

deg(y0/z1) ≤ (ν(
∏

j∈I1
(yj/z1)− e)d1(d

′ − 1)/2

≤ (ν(y0y1...ym)− e)d1(d
′ − 1)/2

(4.2)

where e = 2 when deg(y1) = ... = deg(ym), and e = 1 otherwise.
When z1 = 1, e.g., d′ = d, we are done. In general, we need an upper bound for deg(z1)

to finish the proof. Let I2 be the complement of I1 in {0, 1, ..., m} and V2 =
∑
j∈I2 Fyj.

By the irreducibility condition, V1 ∩ V2 6= 0.
Let 0 6= z =

∑
j∈I′ cjyj ∈ V1 ∩ V2 be a vector with the least number of nonzero

coefficients when written as a linear combination of {yj : j ∈ I2} with minimal possible
number card(I ′) of nonzero coefficients, where I ′ ⊂ I2 and cj ∈ F. This relation is minimal,
hence I1 ∪ I ′ is irreducible. By the maximality of I1, we have I ′ = I2. Thus, m2 :=
card(I2) = dim(I2) = d− d1 = m−m1 ≤ d′. Set z2 = gcd(V2). Note that gcd(z1, z2) = 1.

Applying Theorem 3.1, we obtain that

deg(z1) ≤ deg(z/z2) ≤ max(deg(yj/z2) : j ∈ I2)

≤ −(m2 − 1)m2 +
∑

α∈P 1(F̄ )

∆α(cjyj/z2 : j ∈ I2). (4.3)

Now we use different upper bounds for

∆α(cjyj/z2 : j ∈ I2) = ∆α(cjyj : j ∈ I2)
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in (4.3) for different α ∈ P 1(F̄ ). When α is not a zero of (z/z2)y0...ym nor α = ∞, we
have ∆α(cjyj : j ∈ I2) = 0.

When α is a zero of y0...ym, we use that

∆α(cjyj : j ∈ I2) ≤ (m2 − 1)m2/2 ≤ (d− d1)(d
′ − 1)/2.

We use the same bound when α =∞, unless deg(y1) = ... = deg(ym) in which case we use
the following more precise bound:

∆∞(cjyj : j ∈ I2) = min(m2 − 1, max(deg(yj) : j ∈ I2)− deg(z/z2))
≤ max(deg(yj) : j ∈ I2)− deg(z1).

Finally, when α is a zero of z/z2 but not a zero of y0...ym, we use that
∆α(cjyj : j ∈ I2) ≤ ordα(z/z2) = ordα(z)− ordα(z1).
Substituting these bounds to (4.3), we obtain that
deg(z1) ≤ deg(z/z2) ≤ (ν(y0...ym)− e)(d− d1)(d

′ − 1)/2.
Adding this to (4.2), we obtain the conclusions of the theorem.
Remark. Our Theorem 4.1(a) improves the main result of [Z], (see (4) on page 88

there) with g = 0. The number µ in [Z] is our d, and we replaced µ(µ− 1)/2 in the upper
bound of [Z] by d′(d− 1)/2 ≤ d(d− 1)/2. The number S in [Z] is our ν(y0...ym) + 1 when
S 6= 0; when S = 0 all terms are constant and ν(y0...ym) = 0. Our Theorem 4.1(b) shows
that S in [Z] can be replaced by S−1 in the case when all degrees are the same. Our proof
followed those of [BM] and [Z].

We neither stated nor proved extensions of our results to the case of arbitrary genus g
although there are no difficulties in doing this. The number S in [BM], [Z] can be replaced
by the number S′ ≤ S of places where not all ordα(yj) are the same.

Our next result is similar to Theorem B of [BM] (in the case g = 0). For any nonzero
polynomials y0, ..., ym ∈ F [t] and any α ∈ P 1(F̄ ) let µ(α) + 1 be the number of js with
minimal value of ordα(yj) (over 0 ≤ j ≤ m). Note that 1 ≤ µ(α) ≤ m. When m ≥ 1 and
either y0 = y1 + · · ·+ ym or a family y0, ..., ym is irreducible, we have 1 ≤ µ(α) for all α.
When gcd(y0, ..., ym) = 1, the minimal value is 0 for all α ∈ F̄ . For α = ∞, µ(∞) is the
number of js with maximal deg(yj).

Theorem 4.4. Let m ≥ 2, yj ∈ F [t], gcd(y1, ..., ym) = 1, and y0, y1, ..., ym be an irreducible
family. Let d be the dimension of Fy1 + · · ·+ Fym over F and let d′ ≤ d be as above (i.e.,
d′ + 1 is the maximal cardinality of the minimal sets). Then

deg(y0) ≤ (d′ − 1)
∑m
j=0 ν(yj).

If either d = m or the index 0 belongs to a minimal set I0 with card(I0) = d′, then
deg(y0) ≤ −d′(d′ − 1)/2 + (d′ − 1)

∑m
j=0 ν(yj).

Proof. We follow closely the proof of Theorem 4.1.
Case 1 : d = m. In this case d′ = d = m and y0 =

∑m
j=1 cjyj with 0 6= cj ∈ F. So our

statement follows from Theorem 3.1 because
∆α(c1y1, ..., cmym) ≤ m(m− 1)/2 for α =∞ and
∆α(c1y1, ..., cmym) ≤ (m− 1)

∑m
j=0 sign(ordα(yj))

for all α ∈ F̄ .
Case 2: the index 0 belongs to a minimal set I0 with card(I0) = d′.
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We proceed by induction on m. If m = 2, then either d = 2 and we are done by Case
1 or d = 1 and all yj are constants, so our conclusion is that 0 ≤ 0. Assume now that
d < m ≥ 3.

Let I0, I1, I2, d1, m1, z, z1, z2, m2 be as in the proof of Theorem 4.1 with the following
additional condition: we choose I0 3 0 with card(I0) = d′, so card(I1) ≥ d′.

By the induction hypothesis,

deg(y0/z1) ≤ −(d′ − 1)d′/2 + (d′ − 1)
∑

j∈I1
ν(yj/z1). (4.5)

If z1 = 1, we are done because the right hand side in (4.5) is less than the right hand side in
the conclusion of Theorem 4.4. Let now z1 6= 1. Then d′ ≥ d2 ≥ 2. We set I3 = I2∪{m+1}
and ym+1 = z. Applying Theorem 3.1, we obtain that

deg(z1) ≤ deg(z/z2) ≤ d2

∑

j∈I3
ν(yj/z2) ≤ (d′ − 1)ν(z/z2) + (d′ − 1)

∑

j∈I2
ν(yj). (4.6)

Now it remains to add (4.5) and (4.6) and to observe that ν(z/z2) ≤ ν(z1) and∑
j∈I1 ν(yj/z1) + ν(z1) ≤

∑
j∈I1 ν(yj).

General case. Set M = max(deg(y1),..., deg(ym)). We pick a β ∈ F̄ which is not a
zero of yo...ym and replace yj = yj(t) ∈ F [t] by zj = tMy(1/t + β). Note that the family
z0, z1, ..., zm ∈ F [t] is irreducible, gcd(z1, ..., zm) = 1, deg(zj) = M for all j, ν(yj) = ν(zj)
for at least two js, and ν(yj) ≤ ν(zj) ≤ ν(yj) + 1 for all j.

Now we can use Case 2 with yj replaced by zj and obtain that
deg(y0) ≤M = deg(z0) ≤ m− 2− d′(d′ − 1)/2 + (d′ − 1)

∑m
j=0 ν(zj)

= m− 2− d′(d′ − 1)/2 + (d′ − 1)
∑m
j=0 ν(yj).

If m − 2 − d′(d′ − 1)/2 ≤ 0, we are done. Otherwise we replace zj = zj(t) by zj(t
N )

with a large integer N and obtain that MN ≤ m−2−d′(d′−1)/2+M(d′−1)
∑m
j=0 ν(yj).

Dividing both sides by N and sending N to ∞, we obtain the conclusion of the
theorem.

Corollary 4.7. Under the conditions of Theorem 4.1,
deg(y0) ≤ (d− 1)

∑m
j=0 ν(yj).

If not all yj are constant, then
deg(y0) < (m− 1)

∑m
j=0 ν(yj).

If not all yj are constant and they are pairwise coprime, then
deg(y0) < (d′ − 1)

∑m
j=0 ν(yj).

Proof. This follows from Theorem 4.1 using the following observations. If all yj are
constant, i.e., d = 1, then the conclusion is that 0 ≤ 0. When yj are constant and they are
pairwise coprime we can apply Theorem 3.1 or Theorem 4.1 to a minimal set containing
the index 0.

Our next result is similar to Theorem B of [BM] (in the case g = 0). For any nonzero
polynomials y0, ..., ym ∈ F [t] and any α ∈ P 1(F̄ ) let µ(α) + 1 be the number of js with
minimal value of ordα(yj) (over 0 ≤ j ≤ m). Note that 1 ≤ µ(α) ≤ m. When m ≥ 1 and
either y0 = y1 + · · ·+ ym or a family y0, ..., ym is irreducible, we have 1 ≤ µ(α) for all α.
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When gcd(y0, ..., ym) = 1, the minimal value is 0 for all α ∈ F̄ . For α = ∞, µ(∞) is the
number of js with maximal deg(yj).

Theorem 4.8. Under the conditions of Theorem 4.1,
deg(y0) ≤ 2d′ − d′2 − d +

∑
α∈P 1(F̄ )(d(d− 1)/2− µ′(α)(µ′(α)− 1)/2),

where µ′(α) = max(d− d′, d−m + µ(α)).
Proof. The proof is similar to those of Theorems 4.1 and 4.4 and we leave it to the reader.

5 NONZERO CHARACTERISTIC CASE

Now let p = char(F ) 6= 0. It was shown in [P, p.54] that the equation

xn1 + xn2 = xn3 + xn4 (5.1)

has nontrivial solutions for every n. When n is odd or F is algebraically closed, (5.1) is
essentially the same equation as (1.1) with m = 3.

In [V2] it is shown that for every n, every polynomial in F [t] is the sum of at most
n(p) n-th powers provided that F is an algebraically closed field with char(F ) = p 6= 0
and n is coprime with p. Here n(p) =

∏
(ai + 1) − 1 ≤ n, where the ai are the digits of

n in base p. Moreover [V2] gives solutions with pairwise coprime xi. It follows that (1.1)
has nontrivial solutions (with an arbitrary x0) when m ≥ S(n, p), where S(n, p) is the
minimum of (nk)(p) over all natural numbers k. Obviously, S(n, p) could be small for very

large n. For example, S(n, p) = 3 if n > 2 divides pk + 1 for some k. So for all such n
and any x0, the equation (1.1) with m = 3 has nontrivial solutions in F̄ [t], where F̄ is an
algebraic closure of F.

Thus, when p 6= 0, no upper bound on m prevents the existence of indecomposable
primitive nonconstant solutions of (1.1) in F [t], and one cannot place any bound of the
form m < f(n) with f(n) → ∞ as n → ∞ to prevent pairwise coprime nonconstant
solutions. One can hope to obtain a bound of the form n < f(S(n, p)) (under additional
conditions on solutions).

The main trouble is that the determinant D in Section 3 may vanish even when
y1, ..., ym are linearly independent over F. In fact [K] it vanishes if and only if y1, ..., ym are
linearly dependent over F (tp). If D 6= 0, then it is easy to obtain much sharper conclusions
(cf. the case k = 1 of the next proposition).

For any integer k ≥ 1, we set Fk = F (tp
k

). For any natural number n =
∑

sip
i

written in base p, we set mod(m, pk) =
∑k−1

i=0 sip
i. For any nonzero polynomial z = z(t) =

c
∏

(t − α)n(α) ∈ F [t], where 0 6= c ∈ F, α ∈ F̄ , n(α) = ordα(z), and any integer k ≥ 1,
we define degk(z) =

∑
α mod(n(α), pk). It is a nondecreasing function of k and degk(z) =

deg(z) when pk ≥ deg(z). We denote by νk(z) the number of exponents n(α) which are
not divisible by pk. In particular, ν(z) = ν1(z).

Proposition 5.2. Let m ≥ 2 and y0 = y1 + · · · + ym with yj ∈ F [t]. Suppose that
gcd(y0, ..., ym) = 1. For some integer k ≥ 1 assume that y1, ..., ym are linearly independent
over Fk. Then

deg(y0) ≤ −m(m− 1)/2 +
∑m
j=0 degk(yj) ≤ −m(m − 1)/2 + (pk − 1)

∑m
j=0 νk(yj).

Moreover, in the case k = 1,

13



deg(y0) ≤ −m(m− 1)/2 + (m− 1)
∑m
j=0 ν(yj).

Proof. The condition of linear independence implies that pk ≥ m. We write yj = yj(t) =
∑pk−1
s=0 yj,s(t)

pkts with yj,s(t) = yj,s ∈ F [t]. Such a representation is unique which is easy
to see by induction on k. Also by induction on k it is easy to see that

ordα(yj,s) ≥ (ordα(yj)−mod(ordα(yj), p
k))/pk

for all α, j, s. Now we consider the matrix (yj,s)1≤j≤m,0≤s≤pk−1. Its rank is m. We choose
a square m by m submatrix with nonzero determinant D0 ∈ F [t]. Since pk deg(yj,s) + s ≤
deg(yj), we have deg(yj,s) ≤ (deg(yj)− s)/pk and

deg(D0) ≤ (−m(m− 1)/2 +
∑m
j=1 deg(yj))/pk.

On the other hand,
ordα(D0) ≥

∑m
j=0(ordα(yj)−mod(ordα(yj), p

k))/pk

for every α ∈ F̄ which is not a zero of y0. Moreover this inequality also holds for every
α ∈ F̄ which is a zero of y0, because D0 = Dj , where Dj is the determinant of the matrix

obtained by replacing yj,s by y0,s, and 0 6= cj ∈ F [tp
l

] ⊂ F [tp
k

] for all j.
Thus,∑m
j=0 (deg(yj)− degk(yj))/pk =

∑m
j=0

∑
α∈F̄ (ordα(yj)−mod(ordα(yj), p

k))/pk

≤∑α∈F̄ ordαD0 = deg(D0) ≤ (−m(m− 1)/2 +
∑m
j=1 deg(yj))/pk,

hence we obtain the first conclusion.
Now we consider the case k = 1. Note that the linear independence implies that m ≤ p

and that the Wronskian D0 = det(y
(i)
j )0≤j≤m,1≤i≤m−1 6= 0. It is clear that the row j is

divisible by (t− α)n with
n = ordα(yj)− (the last digit of ordα(yj) in base p) ≤ ordα(yj)− p + 1
≤ ordα(yj)−m + 1.

Since c0D0 = cjDj , where Dj is the determinant obtained when we replace yj by y0, it
follows that

deg(D0) ≥ −(m− 1)ν(yj) +
∑m
j=0 deg(yj).

On the other hand,
deg(D0) ≤ −m(m − 1)/2 +

∑m
j=1 deg(yj).

Comparing this upper bound for deg(D0) with the above lower bound and taking into
account that deg(yj) = degl(yj), we obtain the conclusion.

Remarks. We do not pursue in this paper improvements of the proposition similar to
Theorem 3.1.

We could prove the proposition using divided derivatives (cf. [GV], [Wa]).
If y1, ...., ym are linearly independent over F then they are linearly independent over

Fk for all sufficiently large k. However the proposition gives a meaningful upper bound on
deg(y0) only when k is small.

The proposition can be easily generalized to the situation when every linearly inde-
pendent over F subsequence in y1, ..., ym stays linearly independent over Fk. This is always
true for sufficiently large k, but the larger the k the weaker the conclusion.
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