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Polynomial parametrization

for the solutions of Diophantine equations

and arithmetic groups

By Leonid Vaserstein*

Introduction

This paper was motivated by the following open problem ([8], p.390):

“CNTA 5.15 (Frits Beukers). Prove or disprove the following statement:

There exist four polynomials A,B,C,D with integer coefficients (in any num-

ber of variables) such that AD−BC = 1 and all integer solutions of ad−bc = 1

can be obtained from A,B,C,D by specialization of the variables to integer

values.”

Actually, the problem goes back to Skolem ([13], p.23). Zannier [21]

showed that three variables are not sufficient to parametrize the group SL2Z

which is the set of all integer solutions to the equation x1x2 − x3x4 = 1.

Apparently Beukers posed the question because SL2Z (more precisely,

a congruence subgroup of SL2Z) is related with the solution set X of the

equation x2
1 + x2

2 = x2
3 + 3, and he (like Skolem) expected the negative answer

to CNTA 5.15 as indicated by the following remark ([8], p.389) on the set X:

“ I have begun to believe that that it is not possible to cover all solutions

by a finite number of polynomials simply because I have never seen a polyno-

mial parametrisation of all two by two determinant one matrices with integer

entries.”

In this paper (Theorem 1 below) we obtain the affirmative answer to

CNTA 5.15. As a consequence we prove, for many polynomial equations, that

either the set X of integer solutions is a polynomial family or (more generally)

X is a finite union of polynomial families. It is also possible to cover all

solutions of x2
1 + x2

2 = x2
3 + 3 by two polynomials, see Example 15 below.

A few words about our terminology. Let

(P1(y1, . . . , yN ), . . . , Pk(y1, . . . , yN ))

be a k-tuple of polynomials in N variables with integer coefficients. Plugging in

all N -tuples of integers, we obtain a family X of integer k-tuples, which we call

a polynomial family (defined over the integers Z) with N parameters. We also

*The paper was conceived in July of 2004 while the author enjoyed the hospitality of Tata

Institute for Fundamental Research, India
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say that the set X admits a polynomial parametrization with N parameters. In

other words, a polynomial familyX is the image (range) P (ZN ) of a polynomial

map P : ZN → Zk. We call this map P a polynomial parametrization of X.

Given a Diophantine equation or a system of Diophantine equations we

can ask whether the solution set (over Z) is a polynomial family. In other

words, we can search for a general solution (i.e., a polynomial parametrization

for the set). In the case of a polynomial equation, the polynomials in any

polynomial parametrization form a polynomial solution.

If no polynomial parametrization is known or exists, we can ask whether

the solution set is a finite union of polynomial families. Loosely speaking, are

the solutions covered by a finite number of polynomials?

Also we can ask about polynomial parametrization of all primitive solu-

tions. Recall that a k-tuple of integers is called primitive (or unimodular) if

its GCD is 1. For any homogeneous equation, a polynomial parametrization

of all primitive solutions leads to a polynomial parametrization of all solutions

with one additional parameter.

The open problem CNTA 5.15 quoted above is the question whether the

group SL2Z is a polynomial family, i.e., admits a polynomial parametrization.

Our answer is “yes”:

Theorem 1. SL2Z is a polynomial family with 46 parameters.

We will prove this theorem in Section 1. The proof refines computations

in [10] , [2], [17], [4], especially, the last two papers. Now we consider some

applications of the theorem and some examples.

It is easy to see that the solution set for any linear system of equations

(with integer coefficients) either is empty or admits a polynomial parametriza-

tion of degree ≤ 1 with the number of parameters N less than or equal to the

number of variables k. In Section 2, using our Theorem 1, we obtain

Corollary 2. The set of all primitive solutions for any linear system

of equations with integer coefficients either consists of ≤ 2 solutions or is a

polynomial family.

For example, the set UmnZ of all primitive (unimodular) n-tuples of in-

tegers turns out to be a polynomial family provided that n ≥ 2. When n = 1,

the set Um1Z = {±1} consists of two elements. This set is not a polynomial

family but can be covered by two (constant) polynomials. In general, a finite

set which cardinality 6= 1 is not a polynomial family but can be covered by

a finite number of (constant) polynomials (the number is zero in the case of

empty set).

The set UmnZ is a projection of the set of all integer solutions to the

quadratic equation x1x2+· · ·+x2n−1x2n = 1. So if the latter set is a polynomial
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family then obviously UmnZ is a polynomial family. We will show that this is

the case provided that n ≥ 2. (When n = 1 the solution set Um1Z = GL1Z =

{±1} to the equation x1x2 = 1 is not a polynomial family.)

Corollary 3. When n ≥ 2, the set of all integer solutions of

x1x2 + · · ·+ x2n−1x2n = 1.

is a polynomial family.

In fact, Theorem 1 implies that for many other quadratic equations, the set

of all integer or all primitive solutions is a polynomial family or a finite union of

polynomial families. A useful concept here is the the concept of Q-unimodular

vector x, where Q(x) is a quadratic form, i.e., a homogeneous degree two

polynomial with integer coefficient. An integer vector x is called Q-unimodular

if there exists exists a vector x′ such that Q(x+ x′)−Q(x) −Q(x′) = 1. Our

Corollary 3 is a particular case of the following result, which we will prove in

Section 3:

Corollary 4. Consider the set X of all Q-unimodular solutions to

Q(x) = Q0 where Q(x) is a quadratic form in k variables and Q0 is a given

number. Assume that k ≥ 4 and that Q(x) = x1x2 + x3x4 + Q′(x5, . . . , xk).

Then the set of all Q-primitive solutions of the equation is a polynomial family

with 3k + 80 parameters.

Under an additional condition that k ≥ 6 and Q′(x5, . . . , xk) = x5x6 +

Q′′(x7, . . . , xk), it is easy to get a better bound (with 3k−6 instead of 3k+80)

without using Theorem 1 (see Proposition 3.4 below).

Example 5. The solution set for the Diophantine equation x1x2 = x2
3

admits a polynomial parametrization with three parameters:

(x1, x2, x3) = y1(y
2
2, y

2
3 , y2y3).

Among these solutions, the primitive solutions are those with y1 = ±1 and

(y2, y3) ∈ Um2Z. So by Theorem 1 (or Corollary 1 with n = 2), the set of all

primitive solutions is the union of 2 polynomial families. The set of primitive

solutions is not a polynomial family. This follows easily from the fact that the

polynomial ring Z[y1, . . . , yN ] is a unique factorization domain from any N, so

within any polynomial family either all x1 ≥ 0 or all x1 ≤ 0.

The number 2 here is related with the fact that the group SL2Z acts on the

symmetric matrices

(

x1 x3

x3 x4

)

with 2 orbits on the determinant 0 primitive

matrices. The action is
(

x1 x3

x3 x4

)

7→ αT

(

x1 x3

x3 x4

)

α
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for α ∈ SL2Z where αT is the transpose of α.

An alternative description of the action of SL2Z is
(

x3 −x1

x2 −x3

)

7→ α−1

(

x3 −x1

x2 −x3

)

α

for α ∈ SL2Z. The trace 0 and the determinant x1x2−x2
3 are preserved under

this action.

Example 6. The solution set for x1x2 + x3x4 = 0 admits the following

polynomial parametrization with 5 parameters:

(x1, x2, x3, x4) = y5(y1y2, y3y4, y1y3, y2y4).

Such a solution is primitive if and only if y5 = ±1 and (y1, y4), (y2, y3) ∈ Um2Z.

So by Theorem 1, the set of all primitive solutions is a polynomial family with

92 parameters. By Theorem 2.2 below, the number of parameters can be

reduced to 90.

Example 7. Consider the equation x1x2 = x2
3 +D with a given D ∈ Z.

The case D = 0 was considered in Example 5, so assume now that D 6= 0. We

can identify solutions with integer symmetric 2 by 2 matrices of determinant

D. The group SL2Z acts on the set X of all solutions as in Example 5. It is

easy to see and well-known that every orbit contains either a matrix

(

a b

b d

)

with a 6= 0 and (1 − |a|)/2 ≤ b ≤ |a|/2 ≤ |d|/2 or a matrix

(

0 b

b 0

)

with

b2 = −D. In the first case, |D| = |ad − b2| ≥ a2 − a2/4 = 3a2/4 ≥ 3b2/16

and d is determined by a, b, hence the number of orbits is at most 8|D|/3.
Therefore the total number of orbit is bounded by 8|D|/3 + 2. (Better bounds

and connections with the class number of the field Q[
√
D] are known.)

By Theorem 1, every orbit is a polynomial family with 46 parameters,

so the set X can be covered by a finite set of polynomials and the subset

of primitive solutions can be covered by a finite set of polynomials with 46

parameters each. When D = ±1 or ±2, the number of orbits and hence the

number of polynomials is two. When D = ±3, the number of orbits is four.

When D is square free, every integer solution is primitive.

Example 8. Consider the equation x1x2 +x3x4 = D with a given integer

D (i.e., the equation in Corollary 4 with k = 4, Q0 = D). The case D = 0 was

considered in Example 6, so assume now that D 6= 0. The group SL2Z×SL2Z

acts on the solutions

(

x1 x3

−x4 x2

)

by

(

x1 x3

−x4 x2

)

7→ α−1

(

x1 x3

−x4 x2

)

β
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where α, β ∈ SL2Z.

It is well known that every orbit contains the diagonal matrix

(

d 0

0 D/d

)

,

where d = GCD(x1, x2, x3, x4). So the number of orbits is the number of squares

d2 dividing D. By Theorem 1, the set X of integers solutions is a finite union

of polynomial families and the subset X ′ is a polynomial family with 92 pa-

rameters. When D is square-free, X ′ = X. When D = ±1, Theorem 1 gives a

better number of parameters, namely, 46 instead of 92.

Example 9. Let D ≥ 2 be a square-free integer. It is convenient to write

solutions (x1, x2) = (a, b) of Pell’s equation x2
1−Dx2

2 = 1 as a+b
√
D ∈ Z[

√
D].

Then they form a group under multiplication. All solutions are primitive, and

they are parametrized by two integers, m and n, as follows:

a+ b
√
D = (a0 + b0

√
D)m(a1 + b1

√
D)n

where a0 + b0
√
D is a solution of infinite order and a1 + b1

√
D is a solution of

finite order (this is not a polynomial parametrization!).

We claim that every polynomial solution to the equation is constant. In-

deed, it is clear that
∑ |a|−ε <∞ for any ε > 0 , where the sum is taken over

all solutions a+b
√
D. On the other hand, if we have a non-constant polynomial

solution, we have a non-constant univariate solution f(y) + g(y)
√
D. If g(x) is

not constant, then f(y) is not constant. Let d ≥ 1 be the degree of f(x). Then
∑ |f(z)|−ε = ∞ where the sum is over all z ∈ Z provided that 0 < ε ≤ 1/d.

Since f(z) takes every value at most d times, we obtain a contradiction which

proves that d = 0.

Since the set X of all integer solutions is infinite, it cannot be covered by

a finite number of polynomials.

Remarks. Let a1, a2, . . . be a sequence of integers satisfying a linear re-

currence equation an = c1an−1 + · · · + ckan−k with some k ≥ 1, ci ∈ Z for

all n ≥ k + 1. Then the argument in Example 9 shown that the set X of all

integers ai either is finite or is not a finite union of polynomial families. Note

that X is finite if and only if any of the following conditions holds:

the sequence is bounded,

the sequence is periodic,

the sequence satisfies a linear recurrence equation with all zeros of the

characteristic polynomial being roots of 1,

the sequence satisfies a linear recurrence equation with all zeros of the

characteristic polynomial on the unit circle.

The partition function p(n) provides another set of integers which is not

a finite union of polynomial families (use the well-known asymptotic for p(n)

and the argument in in Example 9).
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S. Frisch proved that every subset of Zk with a finite complement is a

polynomial family.

The set of all positive composite numbers is parametrized by the polyno-

mial

(y2
1 + y2

2 + y2
3 + y2

4 + 2)(y2
5 + y2

6 + y2
7 + y2

8 + 2).

It is known [9] that the union of the set of (positive) primes and a set of

negative integers is a polynomial family. On the other hand, the set of primes

is not a polynomial family. Moreover, it is not a finite union of polynomial

families, see Corollary 5.15 below.

Corollaries 2–4 and Examples 5–9 above are about quadratic equations.

The next three examples are about higher degree polynomial equations.

Example 10. The Fermat equation yn
1 + yn

2 = yn
3 with any given n ≥ 3

has three “trivial” polynomial families of solutions with one parameter each

when n is odd, and it has four polynomial families of solutions when n is even.

The Last Fermat Theorem tells that these polynomial families cover all integer

solutions.

Example 11. It is unknown whether the solution set of x3
1 + x3

2 + x3
3 +

x3
4 = 0 can be covered by a finite set of polynomials. A negative answer was

conjectured in [7].

Example 12. It is unknown whether the solution set of x3
1 + x3

2 + x3
3 =

1 can be covered by a finite number of polynomials. It is known (see [11],

Theorem 2) that the set cannot by covered by a finite number of univariant

polynomials.

To deal with equations x2
1+x2

2 = x2
3 and x2

1+x2
2 = x2

3+3 (which are equiv-

alent over the rational numbers Q to the equations in Examples 5 and 7 with

D = 3 respectively) we need a polynomial parametrization of a congruence

subgroup of SL2Z. Recall that for any nonzero integer q, the principal con-

gruence subgroup SL2(qZ) consists of α ∈ SL2Z such that α ≡ 12 =

(

1 0

0 1

)

modulo q. A congruence subgroup of SL2Z is a subgroup containing a principal

congruence subgroup.

Theorem 13. Every principal congruence subgroup of SL2Z admits a

polynomial parametrization with 94 parameters.

We will prove this theorem in Section 5 below. Theorem 13 implies that

every congruence subgroup is a finite union of polynomial families. There are

congruence subgroups which are not polynomial families, see Proposition 5.13

and Corollary 5.14 below.
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Example 14. Consider the equation x2
1 + x2

2 = x2
3. Its integer solutions

are known as Pythagorean triples; sometimes the name is reserved for solutions

that are primitive and/or positive. Let X be the set of all integer solutions

The equation can be written as x2
1 = (x2 + x3)(x3 − x2) so every element

of X gives a solution to the equation in Example 5.

The setX is not a polynomial family but can be covered by two polynomial

families:

(x1, x2, x3) = y3(2y1y2, y
2
1 − y2

2, y
2
1 + y2

2) or y3(y
2
1 − y2

2, 2y1y2, y
2
1 + y2

2).

The subset X ′ of all primitive solutions is the disjoint union of 4 families

described by the same polynomials but with y3 = ±1 and (y1, y2) ∈ Um2Z

with odd y1 + y2.

To get a polynomial parametrization of these pairs (y1, y2) and hence to

cover X ′ by 4 polynomials we use Theorem 13. Let H be the subgroup of SL2Z

generated by SL2(2Z) and the matrix

(

0 1

−1 0

)

. The first rows of matrices in

H are exactly (a, b) ∈ Um2Z such that a+b is odd. It follows from Theorem 13

(see Example 5.12 below) that H is a polynomial family with 95 parameters.

Thus, the set X ′ of primitive solutions is the union of 4 polynomial families

with 95 parameters each.

Example 15. Now we consider the equation x2
1 +x2

2 = x2
3 +3. Finding its

integer solutions was a famous open problem stated as a limerick a long time

ago; it is CNTA 5.14 in [8]. Using the obvious connection with the equation in

our Example 7, Beukers [8] splits the set of solutions X into two families each

of them parametrized by the group H above (Example 14).

So Theorem 13 implies that X is the union of two polynomial families

contrary to the belief of Beukers [8].

Example 16. A few results of the last millennium [6], [3] together with

our results show that for arbitrary integers a, b, c and any integers α, β, γ ≥ 1,

the set of primitive solutions to the equation axα
1 +bxβ

2 = cxγ
3 can be covered by

a finite (possibly, empty) set of polynomial families. The minimal cardinality

of the set is not always known; in the case of α = β = γ ≥ 3, the cardinality

is 8 for even α and 6 for odd α (Last Fermat Theorem).

In a future paper, using a generalization of Theorem 1 to rings of algebraic

numbers, we will prove that many arithmetic groups are polynomial families.

In this paper, in Section 5 we with consider only Chevalley–Demazure groups of

classical types, namely SLnZ, the symplectic groups Sp2nZ, orthogonal groups

SOnZ, and the corresponding spinor groups SpinnZ.
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Recall that:

•Sp2nZ is a subgroup of SL2nZ preserving the bilinear form

x1y2 − y1x2 + · · · + x2n−1y2n − y2n−1x2n,

•SO2nZ is a subgroup of SL2nZ preserving the quadratic form x1x2 +

· · ·+ x2n−1x2n,

•SO2n+1Z is a subgroup of SL2n+1Z preserving the quadratic form

x1x2 + · · ·+ x2n−1x2n + x2
2n+1,

• there is a homomorphism (isogeny) SpinnZ → SOnZ with both the

kernel and the cokernel of order 2 (see [16]),

•Spin3Z = SL2Z = Sp2Z (see Example 5),

•Spin4Z = SL2Z× SL2Z (see Example 8),

•Spin5Z = Sp4Z and Spin6Z = SL4Z (see [20] ).

From Theorem 1, we easily obtain (see Section 4 below)

Corollary 17. For any n ≥ 2:

(a) the group SLnZ is a polynomial family with 39 + n(3n+ 1)/2 parameters,

(b) the group Spin2n+1Z is a polynomial family with 4n2 + 41 parameters.

(c) the group Sp2nZ is a polynomial family with 3n2 + 2n+ 41 parameters.

(d) the group Spin2n+2Z is a polynomial family with 4(n+ 1)2 − (n+ 1) + 36

parameters.

So SOn+1Z is the union of two polynomial families

The polynomial parametrization of SLnZ implies obviously that the group

GLnZ is a union of two polynomial families for all n ≥ 1. (It is also obvious that

GLnZ is not a polynomial family.) Less obvious is the following consequence

of Corollary 17a:

Corollary 18. For any integer n ≥ 1 the set Mn of all integer

n × n matrices with nonzero determinant is a polynomial family in Zn2

with

2n2 + 6n+ 39 parameters,

Proof. When n = 1,M1 is the set of nonzero integers. It is parametrized

by the the following polynomial

f(y1, y2, y3, y4, y5) = (y2
1 + y2

2 + y2
3 + y2

4 + 1)(2y5 + 1)

with 5 parameters. (We used Lagrange’s theorem asserting that the polynomial

y2
1 + y2

2 + y2
3 + y2

4 parametrizes all integers ≥ 0, but did not use Corollary 17.)

Assume now that n ≥ 2. Every matrix α ∈Mn has the form α = βµ, where

β ∈ SLnZ and µ is an upper triangular matrix with nonzero diagonal entries.

Using 39 + 3n(n+ 1)/2 parameters for α (see Corollary 17a), five parameters

for each diagonal entry in µ (see the case n = 1 above), and one parameter for

each off-diagonal entry in µ, we obtain a polynomial parametrization for Mn

with 39 + 3n(n+ 1)/2 + 5n+ n(n− 1)/2 = 2n2 + 6n+ 39 parameters.
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Remark. Similarly, every system of polynomial inequalities (with the in-

equlity signs 6=,≥,≤, >,< instead of the equality sign in polynomial equations)

can be converted to a system of polynomial equations by introducing additional

variables. For example the set Mn in Corollary 18 is a projection of the set of

all integer solutions to the polynomial equation

det((xi,j) = (x2
n2+1 + x2

n2+2 + x2
n2+3 + x2

n2+4 + 1)(2xn2+5 + 1)

with n2 + 5 variables.

The polynomial parametrization of SLnZ with n ≥ 3 is related with a

bounded generation of this group. In [4], it is proved that every matrix in

SLnZ, n ≥ 3 is a product of 36+n(3n−1)/2 elementary matrices (for n = 2, the

number of elementary matrices is unbounded). Since there are n2−n of types

for elementary matrices zi,j , i 6= j, this gives a polynomial parametrization of

SLnZ, n ≥ 3, with (n2 − n)(36 + n(3n − 1)/2) parameters. Conversely, any

polynomial matrix

α(y1, . . . , yN ) ∈ SLn(Z[y1, . . . , xN ])

is a product of elementary polynomial matrices [14] provided that n ≥ 3.

When α(ZN ) = SLnZ, this gives a representation of every matrix in SLnZ as

a product of a bounded number of elementary matrices.

We conclude the introduction with remarks on possible generalization of

Theorem 1 to commutative rings A with 1. When A is semi-local (which

includes all fields and local rings) or, more generally, A satisfies the first Bass

stable range condition sr(A) = 1 (which includes, e.g., the ring of all algebraic

integers, see [18]), then every matrix in SL2A has the form
(

1 u1

0 1

)(

1 0

u2 1

)(

1 u3

0 1

)(

1 0

u4 1

)

,

which gives a polynomial matrix P (y1, y2, y3, y4) ∈ SL2(Z[y1, y2, y3, y4]) such

that P (A4) = SL2A. For any commutative A with 1, any N, and any polyno-

mial matrix P (y1, . . . , yN ) ∈ SL2(Z[y1, . . . , yN ]), all matrices α ∈ P (An) have

the same Whitehead determinant wh(α) ∈ SK1A [1]. There are rings A, e.g.,

A = Z[
√
−D] for some D [2], such that wh(SL2A) = SK1A 6= 0. For such

rings A, there in no N and P such that P (AN ) = SL2A.

Allowing coefficients in A, does not help much. For any matrix

P (y1, . . . , yN ) ∈ SL2(A[y1, . . . , yN ]),

all matrices in P (AN ) have the same image in SK1A/Nill1A, where Nill1A is

the subgroup of SK1A consisting of wh(α) with unipotent matrices α. There

are rings A such that wh(SL2A) = SK1A 6= Nill1A [2]. For such a ring A,

there in no N and P such that P (AN ) = SL2A.
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1. Proof of Theorem 1

We denote elementary matrices as follows:

b1,2 =

(

1 b

0 1

)

, c2,1 =

(

1 0

c 1

)

.

It is clear that each of the subgroup Z1,2 and Z2,1 of SL2Z is a polynomial

family with one parameter.

Note that the conjugates of all elementary matrices are covered by a poly-

nomial matrix

Φ3(y1, y2, y3) :=

(

1 + y1y3y2 y2
1y3

−y2
2y3 1− y1y3y2

)

in 3 variables. Namely,

αe1,2α−1 =

(

1− aec a2e

−c2e 1 + aec

)

, αe2,1α−1 =

(

1 + bed −b2e
d2e 1− bed

)

for α =

(

a b

c d

)

∈ SL2Z.

Remark. Conversely, every value of Φ3 is a conjugate of b1,2 in SL2Z for

some b ∈ Z.

Next we denote by X4 the set of matrices of the form

ααT =

(

a b

c d

) (

a c

b d

)

= [α,

(

0 1

−1 0

)

] = α

(

0 1

−1 0

)

α−1

(

0 −1

1 0

)

,

where α ∈ SL2Z. Since
(

0 1

−1 0

)

=

(

1 0

−1 1

)(

1 1

0 1

)(

1 0

−1 1

)

,

we have

ααT =

(

1− bd b2

−d2 1 + bd

)(

1− ac a2

−c2 1 + ac

)(

1− bd b2

−d2 1 + bd

)(

0 −1

1 0

)

=: Φ4(a, b, c, d),

hence the set X4 is covered by a polynomial matrix Φ4(y1, y2, y3, y4) in 4 vari-

ables: X4 ⊂ Φ4(Z
4).

Remark.

(

0 −1

1 0

)

= Φ4(0, 0, 0, 0) ∈ Φ4(Z
4) while reduction modulo 2

shows that X4 does not contain

(

0 −1

1 0

)

.
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Note that Φ4(±1, 0, 0,±1) =

(

1 0

0 1

)

. Therefore we can define the poly-

nomial matrix

Φ5(y1, y2, y3, y4, y5) =

(

y5 0

0 1

)

Φ4(1 + y1y5, y2y5, y3y5, 1 + y4y5)

(

y5 0

0 1

)−1

∈ SL2(Z[y1, y2, y3, y4, y5]).

By the definition,
(

e 0

0 1

)(

1 + ae be

ce 1 + de

)(

1 + ae ce

be 1 + de

) (

e 0

0 1

)−1

=

(

1 + ae be2

c 1 + de

)(

1 + ae ce2

b 1 + de

)

∈ Φ5(Z
5)

whenever a, b, c, d, e ∈ Z, e 6= 0, and

(

1 + ae be

ce 1 + de

)

∈ SL2Z.

We denote by X5 ⊂ Φ5(Z
5) the set of matrices of the form

(

1 + ae be2

c 1 + de

)(

1 + ae ce2

b 1 + de

)

with a, b, c, d, e ∈ Z,

(

1 + ae be2

c 1 + de

)

∈ SL2Z. The case e = 0 is included

because Φ5(0, b, c, 0, 0) =

(

1 0

b+ c 1

)

.

Note that X−1
5 = X5. Set Y5 := XT

5 (the transpose of the set X5).

Our next goal is to prove that every matrix in SL2Z is a product of a

small number of elementary matrices and matrices from X5 and Y5.

Lemma 1.1. Let a, c, e ∈ Z, α =

(

1 + ae ce

∗ ∗

)

∈ SL2Z. Then there

are u, v ∈ Z, ε ∈ {1,−1}, and ϕ ∈ X5 such that the matrix

α(eu)1,2v2,1(−c1e)1,2ϕ(−εev)1,2(−εu)2,1

has the form

(

∗ ∗
εc 1 + ae

)

, where c1 := c+ u(1 + ae).

Proof. The case 1 + ae = 0 is trivial (we can take u = v = 0 and ε = −e),
so we assume that 1 + ae 6= 0. By Dirichlet’s theorem on primes in arithmetic

progressions, we find u ∈ Z such that either c1 := c + u(1 + ae) ≡ 1 modulo

4 and −c1 is a prime or c1 := c + u(1 + ae) ≡ 3 modulo 4 and c1 is a prime.

Then GL1(Z/c1Z) is a cyclic group, and the image of -1 in this group is not a

square. So a = ±a2
1 modulo c1 for some a1 ∈ Z. We write a + vc1 = εa2

1 with

v ∈ Z and ε ∈ GL1Z. Then α(ue)1,2v2,1(−c1e)1,2

=

(

1 + εa2
1e c1e

∗ ∗

)

(−c1e)1,2 =

(

1 + εa2
1e −εc1e2a2

1

b1 d1

)

=: β
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for some b1, d1 ∈ Z.

Note that β−1 =

(

d1 εc1a
2
1e

2

−b1 1 + εa2
1e

)

. Since det(β) = 1, we conclude that

d1 − 1 ∈ eZ.
We set

γ :=

(

d1 −b1a2
1e

2

εc1 1 + εa2
1e

)

=

(

∗ ∗
εc1 1 + (a+ vc1)e

)

.

Then ϕ := β−1γ ∈ X5 and γ = βϕ.

Now γ(−εev)1,2(−εu)2,1 =

(

∗ ∗
εc1 1 + ae

)

(−εu)2,1

=

(

∗ ∗
ε(c + u(1 + ae)) 1 + ae

)

(−εu)2,1 =

(

∗ ∗
εc 1 + ae

)

.

Lemma 1.2. Let α =

(

a b

∗ ∗

)

∈ SL2Z,m ≥ 1 an integer. Then there

are zi ∈ Z, ϕ ∈ X5, and ψ ∈ Y5 such that the matrix

αmz1,2
1 z2,1

2 z1,2
3 ϕz1,2

4 z2,1
5 z1,2

6 z2,1
7 ψz2,1

8 z1,2
9 z2,1

10

has the form

(

am b

∗ ∗

)

.

Proof. By the Cayley-Hamilton theorem and mathematical induction on

m,

αm = f12 + gα =

(

f + ga gb

∗ ∗

)

with f, g ∈ Z where 12 is the identity matrix. Since 1 = det(αm) ≡ f2 modulo

g, we can write g = g1g2 with f ≡ 1 modulo g1 and f ≡ −1 modulo g2.

By Lemma 1.1, there are z1, z2, z3, z4, k1 ∈ Z and ϕ1 ∈ X5 such that the

matrix αmz1,2
1 z2,1

2 z1,2
3 ϕ1z

1,2
4 k2,1

1 =: β has the form β =

(

∗ ∗
±g2b f + ga

)

.

Now we apply Lemma 1.1 to the matrix

θ = −
(

0 1

−1 0

)

β

(

0 1

−1 0

)−1

=

(

−f − ga ±g2b
∗ ∗

)

instead of α. So there are k2,−z6,−z7,−z8,−z9 ∈ Z and ϕ′ ∈ X5 such that the

matrix θk1,2
2 (−z6)2,1(−z7)1,2ϕ′(−z8)1,2(−z9)2,1 has the form

(

∗ ∗
±b −f − ga

)

.

Negating this and conjugating by

(

0 1

−1 0

)−1

we obtain that

β(−k2)
2,1z1,2

6 z2,1
7 ψz2,1

8 z1,2
9

has the form µ =

(

f + ga ±b
∗ ∗

)

where ψ :=

(

0 1

−1 0

)−1

ϕ′
(

0 1

−1 0

)

∈ Y5.
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The matrix α is low triangular modulo b, so f + ga ≡ am modulo b. We

find z10 ∈ Z such that f + ga± z10b = am and set z5 = k1 − k2 to obtain our

conclusion.

Corollary 1.3. Let α =

(

a b

∗ ∗

)

∈ SL2Z,m ≥ 1 an integer,

ε ∈ {±1}. Assume that am ≡ ε modulo b. Then there are zi ∈ Z and ϕi ∈ X5

such that

αmz1,2
1 z2,1

2 z1,2
3 ϕ1z

1,2
4 z2,1

5 z1,2
6 z2,1

7 ϕ2z
2,1
8 z1,2

9 z2,1
10 z

1,2
11 z

2,1
12 = ε12.

Proof. By Lemma 1.2, we find t1, zi ∈ Z (1 ≤ i ≤ 9), ϕ ∈ X5, and ψ ∈ Y5

such that the matrix

β := αmz1,2
1 z2,1

2 z1,2
3 ϕz1,2

4 z2,1
5 z1,2

6 z2,1
7 ψz2,1

8 z1,2
9 t2,1

1

has the form

(

am b

∗ ∗

)

. Now we can find t2, z11, z12 ∈ Z such that

βt2,1
2 z1,2

11 z
2,1
12 = ε12.

Setting z10 = t1 + t2 we obtain the conclusion.

For any integer s ≥ 1, we denote by the ∆s the following polynomial

matrix in s parameters:

∆s(y1, . . . , ys) = y1,2
1 y2,1

2 . . .

where the last factor is the elementary matrix y1,2
s (resp., y2,1

s ) when s is odd

(resp., even). We set

Γs(y1, . . . , ys) =

(

0 1

−1 0

)

∆s(y1, . . . , ys)

(

0 1

−1 0

)−1

.

Note that Γs(y1, . . . , ys) = ∆s(y1, . . . , ys)
−1 = Γs(y1, . . . , ys)

T (transpose) for

even s and that ∆s(y1, . . . , ys) = ∆s(y1, . . . , ys)
−1 = Γs(y1, . . . , ys)

T for odd s.

For any s, ∆s(y1, . . . , ys) = Γs+1(0, y1, . . . , ys).

Corollary 1.4. Let α =

(

a b

c d

)

∈ SL2Z, ε ∈ {±1}. Assume that

for some coprime integers m,n ≥ 1 we have am ≡ ±1 modulo b and an ≡ ±1

modulo c. Then there are ε ∈ {±1}, δi ∈ ∆i(Z
i), γi ∈ Γi(Z

i), ϕi ∈ X5 and

ψi ∈ Y5 such that

α = εγ5ϕ1γ4ψ2δ7ψ1δ4ϕ2γ3.

Proof. Replacing m and n by their positive multiples, we can assume that

n = m− 1. By Corollary 1.3,

αm = ±γ5ϕ1γ4ϕ2δ3
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with ϕ1, ϕ2 ∈ X5, δ3 ∈ ∆3(Z
3), γ4 ∈ Γ4(Z

4), γ5 ∈ Γ5(Z
5).

Applying Corollary 1.3 to αT instead of α, we get

(αT )n = ±γ′5ϕ′1γ′4ϕ′2δ′3
with ϕ′i ∈ X5, δ

′
3 ∈ ∆3(Z

3), γ′i ∈ Γi(Z
i).

Conjugating by

(

0 1

−1 0

)

, we obtain that

α−n =

(

0 1

−1 0

)

(αT )n
(

0 1

−1 0

)−1

= ±δ5ψ1δ4ψ2γ3

with ψi ∈ Y5, γ3 ∈ Γ3, δi ∈ ∆4(Z
i).

Therefore

α = αmα−n = ±γ5ϕ1γ4ϕ2δ7ψ1δ4ψ2γ3

where δ7 := δ3δ5 ∈ ∆7(Z
7).

Proposition 1.5. Every matrix α =∈ SL2Z can be represented as

follows:

α = γ5ϕ1γ4ϕ2δ7ψ1δ4ψ2γ6

with δi ∈ ∆i(Z
i), γi ∈ Γi(Z

i), ϕi ∈ X5 and ψi ∈ Y5.

Proof. Let α =

(

a b

c d

)

. The case a = 0 is trivial so let a 6= 0. As in the

proof of Lemma 1.1, can find an integer u such that |b+au| is a positive prime

≡ 3 modulo 4. Then we find an integer v such that c+ av is a positive prime

such that

GCD(c+ av − 1, |b + au| − 1) = 1 or 2.

Let now m = (|b + au| − 1)/2, n = c + av − 1. Then GCD(m,n) =1, i.e.,

m,n are coprime, i.e., (m,n) ∈ Um2Z. Moreover am ≡ ±1 modulo b+ au and

am ≡ 1 modulo c+ av.

By Corollary 1.4,

v2,1αu1,2 = ±γ′5ϕ1γ4ϕ2δ7ψ1δ4ψ2γ3

with δi ∈ ∆i(Z
i), γi, γ

′
i ∈ Γi(Z

i), ϕi ∈ X5 and ψi ∈ Y5.

Set γ5 = (−v)2,1 ∈ Γ55 and γ′4 = γ3(−u)1,2 ∈ Γ4(Z
4). It remains to

observe that ±12 ∈ ∆4(Z
4)∩Γ4(Z

4), hence ±Γi(Z
i) ⊂ Γi+2(Z

i+2) for all i ≥ 1.

In particular, both γ ′4,−γ′4 ∈ Γ6Z
6).

Note that Theorem 1 follows from Proposition 1.5. The polynomial para-

metrization of SL2Z in Proposition 1.5 is explicit enough to see that the num-

ber of parameters is 46 and the total degree is at most 78. This is because the

degrees of ∆s and Γs are both s and the degree of Φ5 is 13.
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2. Primitive vectors and systems of linear equations

First, we use Proposition 1.5 to obtain

Lemma 2.1. For any (a, b) ∈ Um2Z there are δiδ
′
i ∈ ∆i(Z

i), γ4, γ6 ∈
Γi(Z

4), ϕi ∈ X5 and ψi ∈ Y5 such that

(a, b) = (1, 0)δ′4ϕ1γ4ψ2δ7ψ1δ4ϕ2γ6.

Proof. Let α be a matrix in SL2Z with the first row (a, b). We write α as

in Proposition 1.5. Multiplying by the row (1, 0) on the left, we obtain

(a, b) = (1, 0)α = (1, 0)γ5ϕ1γ4ψ2δ7ψ1δ4ϕ2γ6.

Since

(1, 0)Γs(y1, . . . , ys) = (1, 0)∆s−1(y2, . . . , ys),

we can replace γ5 by δ′4 ∈ ∆4(Z
4).

The lemma implies the following result:

Theorem 2.2. The set Um2Z of coprime pairs of integers admits a

polynomial parametrization with 45 parameters.

For n ≥ 3, it is easy to show that UmnZ admits a polynomial parametriza-

tion with 2n parameters. This is because the ring Z satisfies the second Bass

stable range condition. Now we introduce this condition.

A row (a1, . . . , an) ∈ An over an associative ring A with 1 is called uni-

modular if a1A + · · · + anA = A, i.e., there are bi ∈ A such that
∑

aibi = 1.

Let UmnA denotes the set of all unimodular rows in An.

We write sr(A) ≤ n if for any (a1, . . . , an+1) ∈ Umn+1A there are ci ∈ A
such that (a1 + an+1c1, . . . , an + an+1cn) ∈ UmnA.

For example, it is easy to see that sr(A) ≤ 1 for any semi-local ring A and

that sr(Z) ≤ 2.

It is shown in [15] that for any m the condition sr(A) ≤ m implies that

sr(A) ≤ n for every n ≥ m. Moreover, if sr(A) ≤ m and n ≥ m+1, then for any

(a1, . . . , an) ∈ UmnA there are c1, . . . , cm ∈ A such that a′ = (a′i) ∈ Umn−1A

where a′i = ai + anci for i = 1, . . . ,m and a′i = ai for i = m+ 1, . . . , n− 1.

Using now bi ∈ A such that
∑

a′ibi = 1, we obtain that

b
m
∏

i=1

cn,i
i

n−1
∏

i=1

(bi(1− an))i,n
n−1
∏

i=1

(−a′i)n,i = (0, . . . , 0, 1).

Here xi,j denotes an elementary matrix with x at position (i, j). We denote

by EnA the subgroup of GLnA generated by these elementary matrices.
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Thus, there is a polynomial matrix α ∈ En(Z < y1, . . . , y2n+m−2 >) (with

non-commuting yi) which is a product of 2n+m−2 elementary matrices, such

that UmnA is the set of last rows of all matrices in α(Z2n+m−2).

In particular, taking A = Z and m = 2 we obtain

Proposition 2.3. For any n ≥ 3, the set UmnZ is a polynomial family

with 2n parameters.

Now we are ready to prove Corollary 2. Consider now an arbitrary system

of linear equations for k variables x with integer coefficients. We write x and

solutions as rows. Reducing the coefficient matrix to a diagonal form by row

and column addition operations with integer coefficient, we write our answer,

describing all integer solutions, in one of the following three forms:

(1) 0 = 1 (there are no solutions),

(2) x = c where c ∈ Zk is only solution,

(3) x = c+ yµ where c is as above, µ is a N × k integer matrix of rank N ,

and y is a row of N parameters (N ≤ k).

Thus, the set X of all solutions, when it is not empty is a polynomial

family with N ≥ 0 parameters and the degree of parametrization is at most 1.

Now we are interested in the set Y primitive solutions. In Case (1), Y is

empty. In Case (2), Y either is empty or consists of a single solution.

Case (3) in details looks like either

(4) x = yα with α ∈ SLkZ,

or

(5) x = (a, y)α with α ∈ SLkZ, a ∈ Zk−N , 1 ≤ N ≤ k − 1.

In Case (4), N = k and Y is parametrized by UmNZ which is a polynomial

family by Theorem 2.2 and Proposition 2.3 provided that N ≥ 2. When N = 1,

we have α = ±1, and the set Y = Um1Z = {±1} is not a polynomial family,

but consists of two constant polynomial families.

In Case (5) with a = 0 (the homogeneous case), we have N < k and the

set Y is also parametrized by UmNZ.

Now we have to deal with the case (5) with a 6= 0. Let d = GCD(a). Then

Y is parametrized by the set {Z = {b ∈ ZN : GCD(d, GCD(b)) = 1}. We find

a polynomial f(t) ∈ Z[t] whose range reduced modulo d is GL1(Z/dZ). (Find

f(t) modulo every prime p dividing d and then use the Chinese Remainder

Theorem; the degree of f(t) is at most the largest p− 1.)

Then the range of the polynomial f2(t1, t2) := f(t1) + dt2 consists of all

integers z such that GCD(d, z) = 1. Therefore the set Z consists of f2(z1, z2)u

with z1, z2 ∈ Z and u ∈ UmNZ. Thus, any polynomial parametrization of

UmNZ yields a polynomial parametrization of Z (and hence Y ) with two

additional parameters. By Theorem 2.2 and Proposition 2.3, the number of

parameters is at most 41 + 2k (at most 2k when N ≥ 3.).
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3. Quadratic equations

In this section we prove Corollary 4 which includes Corollary 3 as a par-

ticular case with Q0 = 1, k = 2n,

Q′(x5, . . . , xk) = x5x6 + · · · + x2n−1x2n

(Q′ = 0 when n = 2).

We write the k-tuples in Zk as rows. Let e1, . . . , ek be the standard basis

in Zk.

We denote by SO(Q,Z) the subgroup of SLnZ consisting of matrices

a ∈ SLnZ such that Q(xα) = Q(x). In the end of this section, we prove that,

under the conditions of Corollary 4, the group SO(Q,Z) consists of two disjoint

polynomial families.

We define a bilinear form ( , )Q on Zk by (a, b)Q = Q(a+, b)−Q(a)−Q(b).

Following [19], we introduce elementary transformations

τ(e, u) ∈ SO(Q,Z),

where e = e1 or e2 and (e, u)Q = 0, as follows

vτ(e, u) = v + (e, v)Qu− (u, v)Qe−Q(u)(e, v)Qe.

Lemma 3.1. Let Q be as in Corollary 4. Then for any Q-unimodular

row v ∈ Zk there are u, u′ ∈ U =
∑k

i=5 Zei ⊂ Zk such that the first 4 entries

of the row vτ(e1, u)τ(e2, u
′) form a primitive row.

Proof . We write v = (v1, v2, . . . , vk). First we want to find u ∈ U such

that Zv′1 + Zv3 + Zv4 6= 0, where v′ = (v′i) = vτ(e1, u) (note that v′i = vi for

i = 2, 3, 4). If Zv1 + Zv3 + Zv4 6= 0, we can take u = 0.

Otherwise, since v is Q-unimodular, Zv2 + Z(v, w)Q 6= 0 for some w ∈ U.
For v′ = (v′i) = vτ(e1, cw) with c ∈ Z, we have v′1 = v1 − (v, w)Qc−Q(w)v2c

2

is a no-constant polynomial in c (with v1 = 0) so it takes a nonzero value for

some c. Therefore we can set u = cw with this c.

Now we want to find u′ ∈ U such that

(v′′1 , v
′′
2 , v

′′
3 , v

′′
4 ) = (v′1, v

′′
2 , v3, v

′
4) ∈ Um4Z,

where

w′′ = (v′′i ) = v′τ(e2, u
′) = vτ(e1, u)τ(e2, u

′).

Since v′ is Q-unimodular, there is w′ ∈ U such that

(v′1, v2, v3, v4, (v
′, w′)Q ∈ Um5Z.

Since Zv′1+Zv3+Zv4 6= 0, there is c′ ∈ Z such that (v′1, v2−c′(v′, w′)Q, v3, v4) ∈
Um4Z. We set u′ = c′w′. Then v′τ(e2, u

′) = (v′′i ) with

(v′′1 , v
′′
2 , v

′′
3 , v

′′
4 ) = (v′1, v2 − c′(v′, w′)Q − c′2Q(w′)v′1, v3, v4) ∈ Um4Z.
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Lemma 3.2. Let k ≥ 4, Q0 ∈ Z, Q′ any quadratic form in k − 4

variables, and Q(x1, . . . , xk) = x1x2 + x3x4 +Q′(x5, . . . , xk). Then the set X ′

of integer solutions for the equation Q(x) = Q0 with (x1, x2, x3, x4) ∈ Um4Z

is a polynomial family with k + 88 parameters.

Proof. When k = 4, see Examples 6 and 8. Assume now that k ≥ 5. Let

v = (vi) ∈ X ′. Set D = v1v2 + v3v4 ∈ Z. We can write
(

v1 v3
−v4 v2

)

= α−1

(

1 0

0 D

)

β

with α, β ∈ SL2Z. Then we can write

(1, D, 0, 0, v5, . . . , vk) = (1, Q0, 0, . . . , 0)τ(e2,

k
∑

i=5

viei).

So X is parametrized by k − 5 parameters v5, . . . , vk and two matrices in

SL2Z. By Theorem 1, X is a polynomial family with k − 4 + 2 · 46 = k + 88

parameters.

Combining Lemmas 3.1 and 3.2, we obtain Corollary 4.

Lemma 3.3. Under the conditions of Lemma 3.2, assume that k ≥ 6 and

that Q′(x5, . . . , xk) = x5x6 + Q′′(x7, . . . , xk). Then the set X ′ is a polynomial

family with k + 2 parameters.

Proof. Let (vi) ∈ X ′. There is an orthogonal transformation α ∈ SO4Z

(coming from Spin4Z = SL2Z× SL2Z, see Example 8) such that

(v1, v2, v3, v4)α = (1, v1v2 + v3v4, 0, 0).

We set (w1, w2, w3, w4) = (0, 1, 0, 0)α−1 and

w = e1w1 + e2w2 + e3w3 + e4w4 ∈ Zk.

Then Q(w) = 0 = (w, v)Q.

Consider the row v′ = (v′i) = vτ(v5, (1−v5)w). We have v′i = vi+(1−v5)wi

for i = 1, 2, 3, 4, v′5 = 1, and v′i = vi for i ≥ 6.

So v′τ(e6,−
∑

i6=5,6 v
′
i) = e5, henceX ′ is parametrized by 4+(k−2) = k+2

parameters.

Combining Lemmas 3.1 and 3.3, we obtain

Proposition 3.4. Let k ≥ 6, Q0 ∈ Z Q′′ a quadratic form in k − 6

variables, and Q(x1, . . . , xk) = x1x2 + x3x4 + x5x6 +Q′′(x7, . . . , xk). Then the

set of all Q-unimodular solutions for the equation Q(x) = Q0 is a polynomial

family with 3k − 6 parameters.
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4. Chevalley–Demazure groups

We prove here Corollary 17. Let n ≥ 2, and e1, . . . , en the standard basis

of Zn.

First we prove by induction on n that SLnZ admits a polynomial fac-

torization with 39 + n(3n + 1)/2 parameters. The case n = 2 is covered by

Theorem 1. Let n ≥ 3.

We consider the orbit enSL(n,Z).

The orbit admits a parametrization by 2n parameters by Proposition 2.3.

Moreover, there is a polynomial matrix α ∈ En(Z[y1, . . . , y2n]) which is a

product of 2n elementary matrices, such that UmnZ = enα(Z2n).

The stationary group of en consists of all matrices of the form

(

β v

0 1

)

,

where vT ∈ Zn−1.

By the induction hypothesis, the stationary group can be parametrized

by 39 + (n− 1)(3n− 2)/2 + n− 1 parameters. So SLnZ can be parametrized

by

39 + (n− 1)(3n− 2)/2 + n− 1 + 2n = 39 + n(3n+ 1)/2

parameters.

Now we consider the symplectic groups Sp2nZ. We prove Corollary 17c

by induction on n. When n = 1, Sp2Z = SL2Z. Assume now that n ≥ 2.

As in [2], using that sr(Z) =2, we have a matrix

α ∈ Sp2n(Z[y1, . . . , y4n])

such that e2nα = Um2nZ. The stationary group consists of all matrices of the

form





β 0 v

vT 1 c

0 0 1



 , where vT ∈ Z2n−2, c ∈ Z, so by the induction hypothesis

it is parametrized by

2(n− 1)2 + 2(n− 1) + 41 + 2n− 1

parameters.

Therefore Sp2nZ is parametrized by

2(n− 1)2 + 2(n− 1) + 39 + 2n− 1 + 4n = 3n2 + 2n+ 41

parameters.

Now we discuss polynomial parametrizations of the spinor groups

Spin2nZ = Spin(Q2n,Z), n ≥ 3.

We prove Corollary 17d by induction on n. When n = 3, Spin2nZ = SL4Z.

Namely SL4Z acts on alternating 4×4 integer matrices preserving the pfaffian,

which is a quadratic form of type x1x2 + x3x4 + x5x6 (cf., e.g., [20]).
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Assume now that n ≥ 4. The group Spin2nZ acts on Z2n via SO2nZ. The

orbit e2nSO2nZ of e2n is the set of all unimodular (= Q2n-unimodular) solu-

tions for the equation Q2n = 0. By Proposition 3.4, the orbit is parametrized by

6n− 6 parameters. Moreover the matrices τ(∗, ∗) come from Spin2nZ so there

is a polynomial matrix in Spin2nZ with 6n−6 parameters which parametrizes

the orbit. The stationary subgroup in SO2nZ consists of the matrices of the

form





β 0 v

vtT 1 c

0 0 1



 , where

vT ∈ Z2n−2, c = Q2n−2(v
T ) ∈ Z, β ∈ SO2n−2Z.

By the induction hypothesis, the stationary subgroup of e1 in Spin2nZ is

parametrized by

4(n− 1)2 − (n− 1) + 34 + 2n− 2

parameters. So Spin2nZ is a polynomial family with

4(n− 1)2 − (n− 1) + 36 + 2n− 2 + 6n− 3 = 4n2 − n+ 36

parameters.

Finally, we prove Corollary 17b by induction on n. When n = 2, Spin5Z =

Sp4Z (the group Sp4Z ⊂ SL4Z acts on the alternating matrices as above, fixing

a vector of length 1) and the formula works.

Let now n ≥ 3. The orbit e1SO2n+1Z of e1 is the set of all unimodular

(= Q2n-unimodular) solutions for the equation Q2n+1 = 0. By Proposition 3.4,

the orbit is parametrized by 3(2n + 1) − 6 = 6n − 3 parameters. Moreover

the matrices τ(∗, ∗) come from Spin2nZ so there is a polynomial matrix in

Spin2nZ with 6n−3 parameters which parametrizes the orbit. The stationary

subgroup of e1 in SO2n+1Z consists of the matrices of the form





1 0 0

c 1 v

vT 0 β



 ,

where

v ∈ Z2n−1, c = Q2n−1(v) ∈ Z, β ∈ SO2n−1Z.

By the induction hypothesis, the stationary subgroup of e1 in Spin2n−1Z is

parametrized by 4(n−1)2+41+2n−1 parameters. So Spin2nZ is a polynomial

family with

4(n− 1)2 + 41 + 2n− 1 + 6n− 3 = 4n2 + 41

parameters.

Remark. As in Corollary 18, for any square-free integer D or D = 0, we

obtain a polynomial parametrization of the set of all integer n by n matrices

with determinant D. If D is not square-free, the set of matrices is a finite union

of polynomial families.
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5. Congruence subgroups

In this section we fix an integer q ≥ 2. Denote by G(q) the subgroup of

SL2Z consisting of matrices

(

a b

c d

)

such that b, c ∈ qZ and a−1, d−1 ∈ q2Z.

This group is denoted by G(qZ, qZ) in [17]. Note that SL2(q
2Z) ⊂ G(q) =

G(−q) ⊂ SL2qZ.

We parametrize G(q) by the solutions of the equation

x1 + x4 + q2x1x4 − x2x3 = 0

as follows: x1, x2, x3, x4 7→
(

1 + q2x1 qx2

qx3 1 + q2x4

)

.

We use the polynomial matrices Φ4(y1, y2, y3, y4) and Φ5(y1, y2, y3, y4, y5)

defined in Section 1. We denote by

X4(q) ⊂ Φ4(1 + q2Z, qZ, qZ, 1 + q2Z) ⊂ G(q)

the set of matrices of the form ααT with α ∈ G(q). Notice that X4(q)
T =

X4(q)
−1 = X4(q).

We denote by

X5(q) ⊂ Φ5(q
2Z, qZ, qZ, q2Z,Z) ⊂ G(q)

the set of matrices of the form
(

1 + aq2e bqe2

cq 1 + dq2e

)(

1 + aq2e cq2e2

bq 1 + dq2e

)

with a, b, c, d, e ∈ Z,

(

1 + aq2e bqe2

cq 1 + dq2e

)

∈ SL2Z. Set

Y5(q) = (X5(q)
−1)T =

(

0 1

−1 0

)−1

X5(q)

(

0 1

−1 0

)

.

Notice that X5(q)
T = Y5(q)

−1 = Y5(q) and Y5(q)
T = X5(q)

−1 = X5(q)

We also use the polynomial matrices ∆i,Γi defined in Section 1. Notice

that

∆i(qZ
i),Γi(qZ

i) ⊂ G(q)

and that

∆2i(qZ
2i)T = ∆2i(qZ

2i),∆2i(qZ
2i)−1 = Γ2i(qZ

2i),

∆2i−1(qZ
2i−1)T = Γ2i−1(qZ

2i−1),∆2i−1(qZ
2i−1)−1 = ∆2i−1(qZ

2i−1)

for all integers i ≥ 1.
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Lemma 5.1. Let a, c, e ∈ Z, e 6= 0, α =

(

1 + aq2e cqe

∗ ∗

)

∈ G(q). Then

there are δi ∈ ∆i(qZ
i), ε ∈ {1,−1}, and ϕ ∈ X5(q) such that the matrix αδ3ϕδ2

has the form

(

∗ ∗
εcq 1 + aq2e

)

.

Proof. As in the proof of Lemma 1.1 above, we find u, v ∈ Z such that

|c + u(1 + aq2e)| is a prime ≡ 3 modulo 4 and a + vq2c1 = εa2
1 where c1 :=

c + u(1 + aq2e), a1 ∈ Z, and ε ∈ GL1Z. Set δ3 = (uqe)1,2(vq)2,1(−c1eq)1,2 ∈
∆3(qZ

3). Then

αδ3 =

(

1 + εa2
1q

2e c1qe

∗ ∗

)

(−c1eq)1,2 =

(

1 + εa2
1q

2e −εc1e2q3a2
1

b1 d1

)

=: β ∈ G(q)

for some b1, d1 ∈ Z.

Note that β−1 =

(

d1 εc1a
2
1q

3e2

−b1 1 + εa2
1q

2e

)

. Set

θ :=

(

d1 −b1a2
1e

2q2

εc1q 1 + εa2
1q

2e

)

=

(

∗ ∗
εc1q 1 + (a+ vc1)q

2e

)

.

Then ϕ := β−1θ ∈ X5(q) and θ = βϕ.

Now θ(−εevq)1,2(−εuq)2,1 =

(

∗ ∗
εc1q 1 + aq2e

)

(−εuq)2,1

=

(

∗ ∗
ε(c + u(1 + aeq2))q 1 + ae

)

(−εu)2,1 =

(

∗ ∗
εcq 1 + aq2e

)

,

so we can take δ2 := (−εevq)1,2(−εuq)2,1 ∈ X2(q).

Lemma 5.2 (reciprocity). Let a, b ∈ Z and

α =

(

1 + aq2 (1 + bq2)q

∗ ∗

)

∈ G(q).

Then there are ϕ,ϕ′ ∈ X5(q) such that

q1,2α(−q)1,2ϕ(−q)1,2ϕ′(−q)1,2 =

(

1 + bq2 −(1 + aq2)q

∗ ∗

)

.

Proof. We have

α′ = α(−q)1,2 =

(

1 + aq2 (b− a)q3

c d

)

∈ G(q).

Set ϕ := α′−1

(

1 + aq2 cq2

(b− a)q d

)−1

∈ X5(q), hence

α′′ = α′ϕ =

(

1 + aq2 cq2

(b− a)q d

)−1

=

(

d −cq2

−(b− a)q 1 + aq2

)

.
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Now q1,2α′′(−q)1,2 =

(

d′ c′q2

−(b− a)q 1 + bq2

)

. Set

ϕ′ :=

(

d′ c′q2

−(b− a)q 1 + bq2

)−1 (

d′ −(b− a)q3

c′ 1 + bq2

)−1

∈ X5(q),

hence β := q1,2α′′(−q)1,2ϕ′ =

(

d′ −(b− a)q3

c′ 1 + bq2

)−1

=

(

1 + bq2 (b− a)q3

−c′ d′

)

.

Finally, β(−q)1,2 =

(

1 + bq2 −(1 + aq2)q

∗ ∗

)

.

Lemma 5.3. Let α =

(

a b

c d

)

∈ G(q) . Then there are

θ ∈ X4(q), δi ∈ ∆i(qZ
i), γ1 ∈ Γ1qZµ, µ

′ ∈ Y5(q), ε = ±1

such that

(−q)2,1α2ψδ3ϕδ2q
2,1ψq2,1µ′γ1 =

(

∗ ∗
εb2 a

)

.

Proof. Set θ = (αTα)−1 ∈ X4(q), hence

α2θ = α(α−1)T =

(

1 + b(c− b) a(b− c)

d(c− b) 1− c(b− c)

)

.

By Lemma 5.1 with e = (b− c)/q, there are δi ∈ ∆i(qZ
i), ε ∈ {1,−1}, and

ϕ ∈ X5(q) such that the matrix αψδ3ϕδ2 has the form

β =

(

∗ ∗
εaq 1 + b(c− b)

)

.

Now we apply Lemma 5.2 to the matrix (β−1)T =

(

1 + b(c− b) −εaq
∗ ∗

)

and find µ, µ′ ∈ Y5(q) such that

ρ = (−q)2,1βq2,1µq2,1µ′q2,1 =

(

∗ ∗
−ε(1 + b(c− b))q a

)

.

Since 1 + b(c− b) = ad− b2, we have

ρ(εdq)2,1 = ργ1 =

(

∗ ∗
εb2 a

)

.

Lemma 5.4. Let a, c, e ∈ Z, e 6= 0, α =

(

1 + aq2e cqe

∗ ∗

)

∈ G(q), and

ε′ ∈ {±1}. Then there are δi ∈ ∆i(qZ
i), and ϕ ∈ X5(q) such that the matrix

αδ5ϕδ2 has the form

(

∗ ∗
ε′cq 1 + aq2e

)

.
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Proof. We find u, v as in the proof of Lemma 5.1. Now we find w ∈ Z

such that |c2| is a prime ≡ 1 modulo 4 where c2 := c1 + (1 + εa2
1q

2e)w. Then

there are z, a2 ∈ Z such that εa2
1 + zc2 = ε′a2

2. We set

δ5 := (uqe)1,2(vq)2,1(wqe)1,2(zq)2,1(−c2eq)1,2 ∈ ∆5(qZ
3).

Then

αδ5 =

(

1 + ε′a2
2q

2e c2qe

∗ ∗

)

(−c3eq)1,2

=

(

1 + ε′a2
2q

2e −ε′c2e2q3a2
1

b1 d1

)

∈ G(q).

The rest of our proof is the same as that for Lemma 5.1.

Lemma 5.5. Let α =

(

a b

c d

)

∈ G(q). Then there are δi ∈ ∆i(qZ
i),

γ3 ∈ Γ3(qZ
3), ϕ ∈ X5(q), θ ∈ X4(q), and ψ ∈ Y5(q) such that

δ1θα
2δ5ϕδ4ψγ3 =

(

a2 ±b
∗ ∗

)

.

Proof. By Lemma 5.4 with e = ε = 1, we find

ρ = δ5ϕδ2 ∈ ∆5(qZ
5)X5(q)∆2(qZ

2)

such that

αρ =

(

∗ ∗
b a

)

=

(

d′ c′

b a

)

.

Set θ = (α−1)Tα−1 ∈ X4(q), hence θα = (α−1)T =

(

d −c
−b a

)

. Set

δ1 =

(

d′ c′

−b a

)(

d −c
−b a

)−1

∈ ∆1(qZ).

Then

δ1θα
2ρ =

(

d′ −c′
−b a

)(

d′ c′

b a

)

=

(

∗ ∗
b(a− d′) a2 − bc′

)

=

(

d′′ c′′

b(a− d′) 1 + a(a− d′)

)

=: β ∈ G(q)

because ad′ − bc′ = 1.

By Lemma 5.1,

(β−1)T δ3ϕ
′δ′2 =

(

∗ ∗
±b 1 + a(a− d′)

)
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with δi, δ
′
i ∈ ∆i(qZ

i) and ϕ′ ∈ X5(q), hence

βγ′3ψγ2 =

(

1 + a(a− d′) ±b
∗ ∗

)(

a2 − bc′ ±b
∗ ∗

)

with γi, γ
′
i ∈ Γi(qZ

i) and ψ ∈ Y5(q),

Finally, we set δ4 = δ2γ
′
3 ∈ ∆4(qZ

4) and γ3 = γ2(±c′)2,1 ∈ Γ3(qZ
3) to

obtain the conclusion.

Lemma 5.6. Let α =

(

a b

c d

)

∈ G(q). Then there are δi ∈ ∆i(qZ
i),

γ1 ∈ Γ1(qZ), ϕ, ϕ′ ∈ X5(q), θ ∈ X4(q), and ψ ∈ Y5(q) such that

(−q)1,2α2θδ3ϕδ2ψq
1,2ϕ′γ1 =

(

∗ ∗
±b2q a

)

.

Proof. Set θ = α−1(α−1)T ∈ X4(q), so αθ = (α−1)T =

(

d −c
−b a

)

and

α2θ = α

(

d −c
−b a

)

=

(

1− b(b− c) a(b− c)

∗ ∗

)

.

By Lemma 5.1 with e = (b− c)/q, there are δi ∈ ∆i(qZ
i) and ϕ′ ∈ X5(q)

such that the matrix α2θδ3ϕδ2 has the form

(

∗ ∗
±(1− b(b− c))q a

)

= β.

Now we apply Lemma 5.2 to the matrix (βT )−1 =

(

1− b(b− c) ±aq
∗ ∗

)

instead of α. So

q1,2(βT )−1ϕ(−q)1,2ϕ′(−q)1,2 =

(

a ±(1− b(b− c))q

∗ ∗

)

,

with ϕ,ϕ′ ∈ X5(q), hence

(−q)2,1βq1,2ψq2,1ψ′q2,1 =

(

∗ ∗
±(1− b(b− c))q a

)

=: β′

with ψ,ψ′ ∈ Y5(q). Since (1− b(b− c)) = ad− b2, we have β ′γ′1 =

(

∗ ∗
±b2q a

)

for γ′1 = (∓dq)2,1 ∈ Γ1(qZ). Finally, we set γ1 := q2,1γ′1 ∈ Γ(Z), δ2 = δ′2q
2,1.

Corollary 5.7. Let β ∈ G(q). Then there are δi ∈ ∆i(qZ
i), γi ∈

Γi(qZ
i), ϕ, ϕ′ ∈ X5(q), θ ∈ X4(q), ψ ∈ Y5(q), α =

(

a bq

cq d

)

∈ G(q) such that

δ2βδ
′
2ψ(−q)1,2ϕγ2ϕ

′δ3 = α2,

|b|, |c| are positive odd primes not dividing q, and GCD(|b| − 1, |c| − 1|) = 2.



26 LEONID VASERSTEIN

Proof. Let β =

(

a′ b′q

c′q d′

)

.

The case c′ = 0 is trivial so we assume that c′ 6= 0. We find u, v, b ∈ Z

such that a := d′ + c′uq2 is an odd prime and ±b2q2 = c′ + av. Replacing,

if necessary, b by b + wa, we can assume that b is a positive odd prime not

dividing q.

Then

β′ := β(uq)1,2(vq)2,1 = βδ′2 =

(

∗ ∗
±b2q3 a

)

.

Now we find c, d ∈ Z such that α :=

(

a bq

cq d

)

∈ G(q), c is a positive

odd prime not dividing q, and GCD(b− 1, c − 1) = 2.

By Lemma 5.6, there are δi ∈ ∆i(qZ
i), γ′1 ∈ Γ1(qZ), ϕ′ ∈ X5(q), θ

′ ∈
X4(q), and ψ′ ∈ Y5(q) such that

α′ := (−q)1,2α2θδ3ϕδ2ψq
1,2ϕ′γ′1 =

(

∗ ∗
±b2q3 a

)

.

Conjugating, if necessary, this equality by the matrix

(

−1 0

0 1

)

which

leaves invariant the sets ∆i(qZ
i),Γi(qZ

i), X5(q), X4(q), Y5(q) we can assume

that the matrices α′ and β′ have the same last row. Then γ ′′1 = α′β′−1 ∈ Γ1(qZ)

and γ′′1β
′ = α′ hence

γ′′1βδ2 = δ′1α
2θ′δ′3ϕ

′δ′2γ
′
3ψ

′γ′′3 =

(

∗ ∗
±b2q a

)

.

Now we set δ2 := q1,2γ′′1 , δ
′
2 = δ′′2γ

′−1
1 , ψ = ψ′−1, etc.

Lemma 5.8. Let α =

(

a b

∗ ∗

)

∈ G(q),m ≥ 1 an integer. Then there

are δi ∈ ∆i(qZ
i), γ6 ∈ Γ6(qZ

6), θ ∈ X4(q), ϕ, ϕ
′ ∈ X5(q), and ψ ∈ Y5(q) such

that the matrix

δ1θα
2mδ5ϕδ4ψγ6ϕ

′δ3

has the form

(

∗ ∗
±b a2m

)

.

Proof. As in the proof of Lemma 1.2,

β := αm = f12 + gα =

(

f + ga gb

∗ ∗

)

and f2 − 1 ∈ gZ.
By Lemma 5.5, there are δi ∈ ∆i(qZ

i), γ3 ∈ Γ3(qZ
3), and ϕ ∈ X5(q) such

that the matrix δ1θβ
2δ5ϕδ4ψγ3 =: β′ has the form β ′ =

(

(f + ga)2 ±gb
∗ ∗

)

.
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Now by Lemma 5.1 with e = g, there are δi, δ
′
i ∈ ∆i(qZ

i), and ϕ′ ∈ X5(q)

such that β ′′ = β′δ′3ϕ
′δ2 has the form β ′′ =

(

∗ ∗
±b (f + ga)2

)

.

Since (f + ga)2 ≡ a2m modulo b, we have β ′′δ′1 =

(

∗ ∗
±b a2m

)

with

δ′1 ∈ ∆1(qbfZ). Now we set γ6 := γ3δ
′
3 and δ3 := δ2δ

′
1 to finish our proof.

Proposition 5.9.

G(q) = C6X5D4Y5C6X5C6X4C5Y5C4X5D6Y5D6X4C3X5D2X5q
1,2Y5C2

where Di = ∆i(qZ
i), Ci = Γi(qZ

i), X5 = X5(q), Y5 = Y5(q), X4 = X4(q).

Proof. Let β ∈ G(q). By Corollary 5.7,

α2 ∈ D2βD2Y5(−q)1,2X5C2X5C3

or (using that D−1
2i = C2i and D−1

2i−1 = D2i−1)

β ∈ C2α
2C3X5D2X5q

1,2Y5C2

with α =

(

a bq

cq d

)

, primes |b|, |c| not dividing q, GCD(|b| − 1, |c| − 1) = 2.

We pick positive m ∈ (|b| − 1)Z, n ∈ (|c| − 1)Z such that n − m = 1. Then

a2m ≡ 1 modulo bq and a2n ≡ 1 modulo cq and n−m = 1.

By Lemma 5.8,

σ1 =

(

∗ ∗
±b a2m

)

∈ D1X4α
2mD5X5D4Y5C6X5D3.

Since a2m ≡ 1 modulo b, we obtain easily that σ1 ∈ D3. So

α2m ∈ X4D1D3D3X5D6Y5C4X5D5 = X4D6X5D6Y5C4X5D5,

hence

α−2m ∈ D5X5D4Y5C6X5C6X4.

Similarly,

(αT )2n ∈= X4D6X5D6Y5C4X5D5,

hence

α2n ∈= C5Y5C4X5D6Y5D6X4.

Therefore

β ∈ C2(α
−2mα2n)C3X5D2X5q

1,2Y5C2

⊂ C2(D5X5D4Y5C6X5C6X4)(C5Y5C4X5D6Y5D6X4)C3X5D2X5q
1,2Y5C2

= C6X5D4Y5C6X5C6X4C5Y5C4X5D6Y5D6X4C3X5D2X5q
1,2Y5C2.

We used that C2D5 = C6.
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Counting parameters, yields the following result:

Corollary 5.10. G(q) is a polynomial family with 93 parameters.

Moreover, there are polynomial fi ∈ Z[y1, . . . , y93] such that

α :=

(

1 + q2f1 qf2

qf3 1 + q2f4

)

∈ SL2(Z[y1, . . . , y93])

and α(Z93) = G(q).

Now to prove Theorem 13. Consider an arbitrary principal congruence

subgroup SL2(qZ). The factor group SL2(qZ)/SL2(q
2Z) is commutative, so it

is easy to see that it is generated by the images of G(q) and 12,1∆1(qZ)(−1)2,1.

Using Corollary 5.11, we conclude that SL2(qZ) is a polynomial family with

94 parameters. More precisely, we obtain

Corollary 5.11. SL2(qZ) is a polynomial family with 94 parameters.

Moreover, there are polynomial fi ∈ Z[y1, . . . , y94] such that

α :=

(

1 + qf1 qf2

qf3 1 + qf4

)

∈ SL2(Z[y1, . . . , y94])

and α(Z94) = SL2(qZ).

Example 5.12. Let H be the subgroup of SL2Z in Example 14. The

group G(2) is a normal subgroup of index 4 in H. The group H is generated

by G(2) together with the subgroup (−1)2,1∆1(Z)12,1. So H is a polynomial

family with 94 parameters.

Proposition 5.13. Every polynomial family H ⊂ Zk has the following

“strong approximation” property:

if t ∈ Z, t ≥ 2, p
s(1)
1 , . . . , p

s(t)
t are powers of distinct primes pi, and hi ∈ H

for i = 1, . . . , t, then there is h ∈ H such that h ≡ hi modulo p
s(i)
i for i =

1, . . . , t.

Proof. Suppose H = α(ZN ) with α ∈ Z[y1, . . . , yN ].

Let t ∈ Z, t ≥ 2, p
s(1)
1 , . . . , p

s(t)
t powers of distinct primes pi, and hi ∈ H

for i = 1, . . . , t.

We have hi = α(u(i)) for i = 1, . . . , t with u(i) ∈ ZN . By the Chinese

Remainder Theorem, there is u ∈ ZN such that u ≡ u(i) modulo p
s(i)
i for

i = 1, . . . , t.

Set h = α(u). Then h ≡ hi modulo p
s(i)
i for i = 1, . . . , t.

Corollary 5.14. Let H be a subgroup of SL2Z generated by SL2(6Z)

and the matrix

(

0 1

−1 0

)

. Then H is not a polynomial family.
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Proof. We do not have the strong approximation property for H. Namely,

take t = 2, p1 = 2, p2 = 3, s(1) = s(2) = 1. The image of H in SL2(Z/2Z) is

a cyclic group of order 2, and the image of H in SL2(Z/3Z) is a cyclic group

of order 4. The strong approximation for H would imply that the the order of

the image of H in SL2(Z/6Z) is at least 8, while the image is in fact a cyclic

group of order 4.

Corollary 5.15. Let X ⊂ Z be an infinite set of positive primes. The

X is not a polynomial family.

Proof. Suppose X is a polynomial family. Let p1, p2 are distinct primes in

X. By Proposition 5.13, there is z ∈ X such that z ≡ p1 modulo p1 and z ≡ p2

modulo p2. Then z is divisible by both p1 and p2, hence it is not a prime. This

contradiction shows that X is not a polynomial family.

Penn State, University Park, PA
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