Annals of Mathematics, 0 (2006), 1-30

Polynomial parametrization
for the solutions of Diophantine equations
and arithmetic groups

By LEONID VASERSTEIN*

Introduction

This paper was motivated by the following open problem ([8], p.390):

“CNTA 5.15 (Frits Beukers). Prove or disprove the following statement:
There exist four polynomials A, B, C, D with integer coefficients (in any num-
ber of variables) such that AD— BC' = 1 and all integer solutions of ad—bc = 1
can be obtained from A, B,C, D by specialization of the variables to integer
values.”

Actually, the problem goes back to Skolem ([13], p.23). Zannier [21]
showed that three variables are not sufficient to parametrize the group SLoZ
which is the set of all integer solutions to the equation x1xo — z3x4 = 1.

Apparently Beukers posed the question because SL9Z (more precisely,
a congruence subgroup of SLsZ) is related with the solution set X of the
equation z? + 23 = z3 + 3, and he (like Skolem) expected the negative answer
to CNTA 5.15 as indicated by the following remark ([8], p.389) on the set X:

“ T have begun to believe that that it is not possible to cover all solutions
by a finite number of polynomials simply because I have never seen a polyno-
mial parametrisation of all two by two determinant one matrices with integer
entries.”

In this paper (Theorem 1 below) we obtain the affirmative answer to
CNTA 5.15. As a consequence we prove, for many polynomial equations, that
either the set X of integer solutions is a polynomial family or (more generally)
X is a finite union of polynomial families. It is also possible to cover all
solutions of % + 23 = 2% + 3 by two polynomials, see Example 15 below.

A few words about our terminology. Let

(Pl(yly"'7yN)7"'7Pk‘(y17"'ayN))

be a k-tuple of polynomials in /N variables with integer coefficients. Plugging in
all N-tuples of integers, we obtain a family X of integer k-tuples, which we call
a polynomial family (defined over the integers Z) with N parameters. We also

*The paper was conceived in July of 2004 while the author enjoyed the hospitality of Tata
Institute for Fundamental Research, India
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say that the set X admits a polynomial parametrization with N parameters. In
other words, a polynomial family X is the image (range) P(Z") of a polynomial
map P : ZN — ZF. We call this map P a polynomial parametrization of X.

Given a Diophantine equation or a system of Diophantine equations we
can ask whether the solution set (over Z) is a polynomial family. In other
words, we can search for a general solution (i.e., a polynomial parametrization
for the set). In the case of a polynomial equation, the polynomials in any
polynomial parametrization form a polynomial solution.

If no polynomial parametrization is known or exists, we can ask whether
the solution set is a finite union of polynomial families. Loosely speaking, are
the solutions covered by a finite number of polynomials?

Also we can ask about polynomial parametrization of all primitive solu-
tions. Recall that a k-tuple of integers is called primitive (or unimodular) if
its GCD is 1. For any homogeneous equation, a polynomial parametrization
of all primitive solutions leads to a polynomial parametrization of all solutions
with one additional parameter.

The open problem CNTA 5.15 quoted above is the question whether the
group SLoZ is a polynomial family, i.e., admits a polynomial parametrization.

Our answer is “yes”:

THEOREM 1.  SLsZ is a polynomial family with 46 parameters.

We will prove this theorem in Section 1. The proof refines computations
in [10] , [2], [17], [4], especially, the last two papers. Now we consider some
applications of the theorem and some examples.

It is easy to see that the solution set for any linear system of equations
(with integer coefficients) either is empty or admits a polynomial parametriza-
tion of degree < 1 with the number of parameters N less than or equal to the
number of variables k. In Section 2, using our Theorem 1, we obtain

COROLLARY 2.  The set of all primitive solutions for any linear system
of equations with integer coefficients either consists of < 2 solutions or is a
polynomial family.

For example, the set Um,,Z of all primitive (unimodular) n-tuples of in-
tegers turns out to be a polynomial family provided that n > 2. When n =1,
the set Umi1Z = {£1} consists of two elements. This set is not a polynomial
family but can be covered by two (constant) polynomials. In general, a finite
set which cardinality # 1 is not a polynomial family but can be covered by
a finite number of (constant) polynomials (the number is zero in the case of
empty set).

The set Um,Z is a projection of the set of all integer solutions to the
quadratic equation x1xo+- - -+ x2,_1T2, = 1. So if the latter set is a polynomial
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family then obviously Um,,Z is a polynomial family. We will show that this is
the case provided that n > 2. (When n = 1 the solution set UmZ = GL1Z =
{£1} to the equation zix9 = 1 is not a polynomial family.)

COROLLARY 3. When n > 2, the set of all integer solutions of
T1xg + + -+ Top—1T2n = L.
s a polynomial family.

In fact, Theorem 1 implies that for many other quadratic equations, the set
of all integer or all primitive solutions is a polynomial family or a finite union of
polynomial families. A useful concept here is the the concept of Q-unimodular
vector x, where Q(z) is a quadratic form, i.e., a homogeneous degree two
polynomial with integer coefficient. An integer vector x is called @Q-unimodular
if there exists exists a vector 2’ such that Q(z + 2') — Q(z) — Q(2') = 1. Our
Corollary 3 is a particular case of the following result, which we will prove in
Section 3:

COROLLARY 4. Consider the set X of all Q-unimodular solutions to
Q(z) = Qo where Q(zx) is a quadratic form in k variables and Qo is a given
number. Assume that k > 4 and that Q(x) = z1x9 + 2314 + Q' (75, .., T))-
Then the set of all Q-primitive solutions of the equation is a polynomial family
with 3k 4+ 80 parameters.

Under an additional condition that & > 6 and Q'(zs,...,x;) = T5x6 +
Q" (z7,...,xL), it is easy to get a better bound (with 3k — 6 instead of 3k + 80)
without using Theorem 1 (see Proposition 3.4 below).

Ezample 5. The solution set for the Diophantine equation ziz9 = ZL%
admits a polynomial parametrization with three parameters:

(1‘1,3327333) = yl(yg,yg,ygyg).

Among these solutions, the primitive solutions are those with y; = £1 and
(y2,y3) € UmaZ. So by Theorem 1 (or Corollary 1 with n = 2), the set of all
primitive solutions is the union of 2 polynomial families. The set of primitive
solutions is not a polynomial family. This follows easily from the fact that the
polynomial ring Z[y1, ..., yn] is a unique factorization domain from any N, so
within any polynomial family either all 1 > 0 or all 1 < 0.

The number 2 here is related with the fact that the group SLyZ acts on the
1 I3

xr3 T4
matrices. The action is

r1 X3 T(Z1 I3
= [0
r3 T4 r3 T4

symmetric matrices < > with 2 orbits on the determinant 0 primitive
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for a € SLyZ where ol is the transpose of o
An alternative description of the action of SLoZ is

T3 —I -1 (%3 —T1
— o
Tro —I3 Tro —I3

for o € SLoZ. The trace 0 and the determinant xxo — x% are preserved under
this action.

Ezxzample 6. The solution set for x1x9 + x3x4 = 0 admits the following
polynomial parametrization with 5 parameters:

(w1, 22,23, 24) = Ys(Y1Y2, Y3Y4, Y193, Y2Y4)-

Such a solution is primitive if and only if y5 = £1 and (y1,y4), (y2, y3) € UmsZ.
So by Theorem 1, the set of all primitive solutions is a polynomial family with
92 parameters. By Theorem 2.2 below, the number of parameters can be
reduced to 90.

Ezxzample 7. Consider the equation z1x9 = :Cg + D with a given D € Z.
The case D = 0 was considered in Example 5, so assume now that D # 0. We
can identify solutions with integer symmetric 2 by 2 matrices of determinant
D. The group SL,Z acts on the set X of all solutions as in Example 5. It is

. . . . b
easy to see and well-known that every orbit contains either a matrix <Z d)

with a # 0 and (1 — |a])/2 < b < |a|/2 < |d|/2 or a matrix <2 8) with

b> = —D. In the first case, |D| = |ad — b?| > a® — a%/4 = 3a®/4 > 3b%/16
and d is determined by a,b, hence the number of orbits is at most 8|D|/3.
Therefore the total number of orbit is bounded by 8| D|/3 4 2. (Better bounds
and connections with the class number of the field Q[v/D] are known.)

By Theorem 1, every orbit is a polynomial family with 46 parameters,
so the set X can be covered by a finite set of polynomials and the subset
of primitive solutions can be covered by a finite set of polynomials with 46
parameters each. When D = +1 or 42, the number of orbits and hence the
number of polynomials is two. When D = 43, the number of orbits is four.

When D is square free, every integer solution is primitive.

Ezample 8. Consider the equation 19+ r3z4 = D with a given integer
D (i.e., the equation in Corollary 4 with k = 4,Qo = D). The case D = 0 was
considered in Example 6, so assume now that D # 0. The group SLsZ x SLoZ

. x x
acts on the solutions < ! 3) by
—Ty4 X2

r1r T3 -1 rr x3
— Ié]
—T4 X2 —T4 X2
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where «, 3 € SLoZ.

It is well known that every orbit contains the diagonal matrix <g DO/ d) )

where d = GCD(z1, z2, 23, 24). So the number of orbits is the number of squares
d? dividing D. By Theorem 1, the set X of integers solutions is a finite union
of polynomial families and the subset X’ is a polynomial family with 92 pa-
rameters. When D is square-free, X’ = X. When D = +1, Theorem 1 gives a
better number of parameters, namely, 46 instead of 92.

Ezample 9. Let D > 2 be a square-free integer. It is convenient to write
solutions (z1,x2) = (a,b) of Pell’s equation 22 — Dz? = 1 as a+bV/D € Z[VD].
Then they form a group under multiplication. All solutions are primitive, and
they are parametrized by two integers, m and n, as follows:

a—+ b\/ﬁ = (ao + bo\/ﬁ)m(aq + bl\/ﬁ)n

where ag + byv/D is a solution of infinite order and a; + b;v/D is a solution of
finite order (this is not a polynomial parametrization!).

We claim that every polynomial solution to the equation is constant. In-
deed, it is clear that ) |a|™¢ < oo for any € > 0 , where the sum is taken over
all solutions a+bv/D. On the other hand, if we have a non-constant polynomial
solution, we have a non-constant univariate solution f(y) + g(y)VD. If g(z) is
not constant, then f(y) is not constant. Let d > 1 be the degree of f(x). Then
> 1f(2)]7¢ = oo where the sum is over all z € Z provided that 0 < ¢ < 1/d.
Since f(z) takes every value at most d times, we obtain a contradiction which
proves that d = 0.

Since the set X of all integer solutions is infinite, it cannot be covered by
a finite number of polynomials.

Remarks. Let a1,a9,... be a sequence of integers satisfying a linear re-
currence equation a, = c¢ian_1 + -+ + cxa,_p with some k > 1,¢; € Z for
all n > k + 1. Then the argument in Example 9 shown that the set X of all
integers a; either is finite or is not a finite union of polynomial families. Note
that X is finite if and only if any of the following conditions holds:

the sequence is bounded,

the sequence is periodic,

the sequence satisfies a linear recurrence equation with all zeros of the
characteristic polynomial being roots of 1,

the sequence satisfies a linear recurrence equation with all zeros of the
characteristic polynomial on the unit circle.

The partition function p(n) provides another set of integers which is not
a finite union of polynomial families (use the well-known asymptotic for p(n)
and the argument in in Example 9).
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S. Frisch proved that every subset of Z* with a finite complement is a
polynomial family.
The set of all positive composite numbers is parametrized by the polyno-
mial
(Y1 + 93 + 3 +yi +2)(v5 +y5 +uF +uE +2).

It is known [9] that the union of the set of (positive) primes and a set of
negative integers is a polynomial family. On the other hand, the set of primes
is not a polynomial family. Moreover, it is not a finite union of polynomial
families, see Corollary 5.15 below.

Corollaries 2—4 and Examples 5-9 above are about quadratic equations.
The next three examples are about higher degree polynomial equations.

Ezample 10. The Fermat equation yi' 4+ y5 = y5 with any given n > 3
has three “trivial” polynomial families of solutions with one parameter each
when n is odd, and it has four polynomial families of solutions when n is even.
The Last Fermat Theorem tells that these polynomial families cover all integer
solutions.

Ezample 11. Tt is unknown whether the solution set of z$ + x3 + 23 +
x3 = 0 can be covered by a finite set of polynomials. A negative answer was
conjectured in [7].

Ezample 12. Tt is unknown whether the solution set of x3 + 23 + z3 =
1 can be covered by a finite number of polynomials. It is known (see [11],
Theorem 2) that the set cannot by covered by a finite number of univariant
polynomials.

To deal with equations % +23 = 23 and 2% + 23 = 23 +3 (which are equiv-
alent over the rational numbers Q to the equations in Examples 5 and 7 with
D = 3 respectively) we need a polynomial parametrization of a congruence
subgroup of SLyZ. Recall that for any nonzero integer ¢, the principal con-

gruence subgroup SLy(qZ) consists of a € SLyZ such that o = 15 = <(1) (1)>

modulo ¢q. A congruence subgroup of SLoZ is a subgroup containing a principal
congruence subgroup.

THEOREM 13.  Ewery principal congruence subgroup of SLoZ admits a
polynomial parametrization with 94 parameters.

We will prove this theorem in Section 5 below. Theorem 13 implies that
every congruence subgroup is a finite union of polynomial families. There are
congruence subgroups which are not polynomial families, see Proposition 5.13
and Corollary 5.14 below.
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Ezample 14. Consider the equation % + 23 = z2. Its integer solutions
are known as Pythagorean triples; sometimes the name is reserved for solutions
that are primitive and/or positive. Let X be the set of all integer solutions

The equation can be written as 22 = (x5 + 23)(73 — z2) so every element
of X gives a solution to the equation in Example 5.

The set X is not a polynomial family but can be covered by two polynomial
families:

(21,22, 23) = y3(201Y2, U5 — Y3, Yi +¥3) or ys(y5 — v3, 2y192, Y1 + v3)-

The subset X’ of all primitive solutions is the disjoint union of 4 families
described by the same polynomials but with y3 = +1 and (y1,y2) € UmsZ
with odd y; + yo.

To get a polynomial parametrization of these pairs (y1,y2) and hence to

cover X’ by 4 polynomials we use Theorem 13. Let H be the subgroup of SLoZ
1

generated by SLs(2Z) and the matrix ( _01 0> . The first rows of matrices in

H are exactly (a,b) € UmsyZ such that a+0b is odd. It follows from Theorem 13

(see Example 5.12 below) that H is a polynomial family with 95 parameters.

Thus, the set X’ of primitive solutions is the union of 4 polynomial families

with 95 parameters each.

Ezample 15. Now we consider the equation z3 + 23 = 2% + 3. Finding its
integer solutions was a famous open problem stated as a limerick a long time
ago; it is CNTA 5.14 in [8]. Using the obvious connection with the equation in
our Example 7, Beukers [8] splits the set of solutions X into two families each
of them parametrized by the group H above (Example 14).

So Theorem 13 implies that X is the union of two polynomial families
contrary to the belief of Beukers [8].

Ezample 16. A few results of the last millennium [6], [3] together with
our results show that for arbitrary integers a, b, ¢ and any integers «, 3,7 > 1,
the set of primitive solutions to the equation am?+bm§ = cxj can be covered by
a finite (possibly, empty) set of polynomial families. The minimal cardinality
of the set is not always known; in the case of « = 3 = v > 3, the cardinality
is 8 for even a and 6 for odd « (Last Fermat Theorem).

In a future paper, using a generalization of Theorem 1 to rings of algebraic
numbers, we will prove that many arithmetic groups are polynomial families.
In this paper, in Section 5 we with consider only Chevalley—Demazure groups of
classical types, namely SL,Z, the symplectic groups Spo,Z, orthogonal groups
SO,7Z, and the corresponding spinor groups Spin,Z.
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Recall that:
eSpo,Z is a subgroup of SLs,Z preserving the bilinear form
T1Y2 — Y122 + -+ Ton—1Y2n — Y2n—1T2n,

0509, 7Z is a subgroup of SLo,Z preserving the quadratic form xixo +
co T Ton—1%on,

509,117 is a subgroup of SLg,117Z preserving the quadratic form

T1X2 + + -+ Top—1Ton + $%n+1’

e there is a homomorphism (isogeny) Spin,Z — SO,Z with both the
kernel and the cokernel of order 2 (see [16]),

oSpinsZ = SLyZ = SpoZ (see Example 5),

oSpingZ = SLyZ x SLyZ (see Example 8),

oSpinsZ = SpaZ and SpingZ = SL4Z (see [20] ).

From Theorem 1, we easily obtain (see Section 4 below)

COROLLARY 17.  For any n > 2:
) the group SL,Z is a polynomial family with 39 + n(3n + 1)/2 parameters,
) the group Spins,1Z is a polynomial family with 4n® + 41 parameters.
) the group SpanZ is a polynomial family with 3n® + 2n + 41 parameters.
) the group Spingni2Z is a polynomial family with 4(n +1)% — (n + 1) + 36
parameters.
S0 SOn11Z is the union of two polynomial families

(a
(b
(c
(d

The polynomial parametrization of SL,Z implies obviously that the group
GL,Z is a union of two polynomial families for all n > 1. (It is also obvious that
GL,Z is not a polynomial family.) Less obvious is the following consequence
of Corollary 17a:

COROLLARY 18. For any integer n > 1 the set M, of all integer
n X n matrices with nonzero determinant is a polynomial family in Z" with
2n? + 6n + 39 parameters,

Proof. When n = 1, M; is the set of nonzero integers. It is parametrized
by the the following polynomial

Fry2,y3,y1,95) = (VF +v3 +y3 +vyi +1)(2ys + 1)

with 5 parameters. (We used Lagrange’s theorem asserting that the polynomial
T yg + 42 parametrizes all integers > 0, but did not use Corollary 17.)

Assume now that n > 2. Every matrix a € M,, has the form a = Bu, where
8 € SL,Z and p is an upper triangular matrix with nonzero diagonal entries.
Using 39 + 3n(n + 1)/2 parameters for a (see Corollary 17a), five parameters
for each diagonal entry in u (see the case n = 1 above), and one parameter for
each off-diagonal entry in u, we obtain a polynomial parametrization for M,
with 39 + 3n(n +1)/2 + 5n + n(n — 1)/2 = 2n? + 6n + 39 parameters. O
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Remark. Similarly, every system of polynomial inequalities (with the in-
equlity signs #, >, <, >, < instead of the equality sign in polynomial equations)
can be converted to a system of polynomial equations by introducing additional
variables. For example the set M, in Corollary 18 is a projection of the set of
all integer solutions to the polynomial equation

det((2i,)) = (Zpaiy + Thayy +Thayy +Thoy +1)(220245 +1)
with n2 + 5 variables.

The polynomial parametrization of SL,Z with n > 3 is related with a
bounded generation of this group. In [4], it is proved that every matrix in
SL,Z,n > 3is aproduct of 364+n(3n—1)/2 elementary matrices (for n = 2, the
number of elementary matrices is unbounded). Since there are n? —n of types
for elementary matrices 27,7 # j, this gives a polynomial parametrization of
SL,Z,n > 3, with (n? — n)(36 + n(3n — 1)/2) parameters. Conversely, any
polynomial matrix

alyry...,yn) € SL,(Z[y1,...,xN])

is a product of elementary polynomial matrices [14] provided that n > 3.
When o(ZV) = SL,Z, this gives a representation of every matrix in SL,Z as
a product of a bounded number of elementary matrices.

We conclude the introduction with remarks on possible generalization of
Theorem 1 to commutative rings A with 1. When A is semi-local (which
includes all fields and local rings) or, more generally, A satisfies the first Bass
stable range condition sr(A) = 1 (which includes, e.g., the ring of all algebraic
integers, see [18]), then every matrix in SL2A has the form

(o 1) D) %))

which gives a polynomial matrix P(y1,v2,vs3,y4) € SLa(Z[y1,y2,ys,y4]) such
that P(A*) = SLyA. For any commutative A with 1, any N, and any polyno-
mial matrix P(yi,...,yn) € SLa(Z[y1,...,yn]), all matrices & € P(A™) have
the same Whitehead determinant wh(a) € SK;A [1]. There are rings A, e.g.,
A = Z[\/-D] for some D [2], such that wh(SLyA) = SK1A # 0. For such
rings A, there in no N and P such that P(AV) = SLyA.

Allowing coefficients in A, does not help much. For any matrix

P(y1,...,yn) € SLa(Aly1, - .-, yn])s

all matrices in P(A") have the same image in SK{A/Nilly A, where Nill{ A is
the subgroup of SK; A consisting of wh(a)) with unipotent matrices c.. There
are rings A such that wh(SLeA) = SK1A # Nill; A [2]. For such a ring A,
there in no N and P such that P(AY) = SLyA.
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1. Proof of Theorem 1

We denote elementary matrices as follows:

1,2 _ 1 b 2,1 _ 1 0
b _<0 1)°¢ “\e 1)

It is clear that each of the subgroup Z'? and Z>' of SLsZ is a polynomial
family with one parameter.

Note that the conjugates of all elementary matrices are covered by a poly-
nomial matrix

1+ v1y3y2 Yiys
P3(y1, Y2, y3) = ( —y3y3 1- ;11/31/2

in 3 variables. Namely,

1— aec a’e 1+bed —b%e
12 —1 _ 21 -1 _
aea < —c%e 1+ aec) yaeTa < d2e 1 — bed

for a = <a b) € SLoZ.
c d

Remark. Conversely, every value of ®3 is a conjugate of b1'? in SLyZ for
some b € Z.

Next we denote by X4 the set of matrices of the form

(8 5)mn( Di=e(h D) (0 )

where o € SLyZ. Since

(ra)=(GDG ) (),

ool — (1 bd b? l1—ac a? 1—bd b 0 -1
T\ —d®> 14bd -2 1+ac —d®> 1+bd)\1 0
=: ®y(a,b,c,d),

hence the set X, is covered by a polynomial matrix ®4(y1,y2,ys3,y4) in 4 vari-
ables: Xy C ®4(Z*).

Remark. <(1) _01> = ©4(0,0,0,0) € ®4(Z*) while reduction modulo 2

shows that X4 does not contain <(i _01> .
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1 0

Note that ®4(£1,0,0,£1) = <0 1

> . Therefore we can define the poly-

nomial matrix
-1
0 0
5(y1, 92, Y3, Y1, Ys) = (%5 1) ©4(1 + y1y5, Y25, Y3ys, L + yays) <%5 1)

€ SLy(Zly1,y2, Y3, Y4, Ys))-
By the definition,

e O 14 ae be 14 ae ce e 0\ !
0 1 ce 1+ de be 1+de 0 1

_(1+ae  be? l+ae  ce? 5
_< c 1+de>< b 1+de>€¢5(z)

1+ae be
14 d€> € SLoZ.
We denote by X5 C ®5(Z5) the set of matrices of the form

1+ae  be? 1+ae  ce?
c 1+ de b 14 de
be?
1+ de

whenever a,b,c,d,e € Z,e # 0, and (

with a,b,c,d,e € Z, <1 —i—cae > € SLyZ. The case e = 0 is included

b+c 1
Note that X5_1 = X5. Set Y5 := X5T (the transpose of the set X5).
Our next goal is to prove that every matrix in SLsZ is a product of a
small number of elementary matrices and matrices from X5 and Y5.

because ®5(0,b,¢,0,0) = < 1 0> .

LEMMA 1.1. Let a,c,e € Z,a0 = 1 tae C:) € SLoZ. Then there
are u,v € Z,e € {1,—1}, and ¢ € X5 such that the matrix
aleu)V 2o (—cre)p(—cev)VE (—eu)®!
* *
has the form <€c . ae> , where ¢1 := ¢+ u(1 + ae).
Proof. The case 1+ ae = 0 is trivial (we can take u = v = 0 and € = —e),

so we assume that 1+ ae # 0. By Dirichlet’s theorem on primes in arithmetic
progressions, we find u € Z such that either ¢; := ¢+ u(1 4+ ae) = 1 modulo
4 and —c; is a prime or ¢; := ¢+ u(1 + ae) = 3 modulo 4 and ¢; is a prime.
Then GL1(Z/c1Z) is a cyclic group, and the image of -1 in this group is not a
square. So a = :l:a% modulo ¢; for some a1 € Z. We write a + ve; = sa% with
v € Z and ¢ € GL1Z. Then a(ue)l?v?t(—cre)l?

_ (1+4ceaie cie 12 (1+eaie —ccie?al
N < * * (—ere)™” = by di =5
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for some b1,dy € Z.
Note that g1 = <

di — 1€ eZ.
We set

L d1 —bla%€2 . * *
T \eer 1+4ea2e) T \eer 1+ (a+ver)e )

Then ¢ := 371y € X5 and v = Be.

* k

N <E(c+u(*1+ae)) 1:ae>(_€u)271: <;c 1—:ae>'

LEMMA 1.2, Let a = (f: f:) € SLoZ,m > 1 an integer. Then there

di ecy a%e2

b 14 Ea%e>' Since det(3) = 1, we conclude that

are z; € Z,p € X5, and i € Yy such that the matriz

m.12.21 12 1221 12 21, 21 12 21
Qa2 2y a2y 2g" 2 Wy 297 2

has the form (a* b> .

*

Proof. By the Cayley-Hamilton theorem and mathematical induction on
m7

™ = flg + ga = <f+ga gb)

* *

with f,g € Z where 15 is the identity matrix. Since 1 = det(a™) = f? modulo

g, we can write g = g1g2 with f =1 modulo g1 and f = —1 modulo gs.
By Lemma 1.1, there are 21, 29, 23, 24, k1 € Z and 1 € X5 such that the
e qmp 2,2 12 1220 g _ * *

matrix o272y 237 12, k]" =: 8 has the form (3 <iggb Figa)
Now we apply Lemma 1.1 to the matrix

_ 0 1 0 1 _1_ —f—ga Zgob
9__<—1 0>B<—1 0) _< * *2>

instead of a.. So there are ko, —zg, —27, —28, —29 € Z and ¢’ € X5 such that the

. 1,2 * *
matrix 6k, (—26)%1 (—27) 12 (—28) 2 (—29)%! has the form <:|:b . ga> .

-1
1
Negating this and conjugating by <_01 0) we obtain that
1,221, 2,1 1,2
ﬂ(_k2)2,126y 27y wzgv Zgy

([ f+ga £b (0 1N 0 1
hastheform,u-( . . where ¢ 1= 10 Y\ o €Ys.
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The matrix « is low triangular modulo b, so f 4+ ga = a™ modulo b. We
find z19 € Z such that f + ga £ z10b = o' and set z5 = k1 — ko to obtain our
conclusion.

b .
COROLLARY 1.3. Let a = : *> € SLoZ,m > 1 an integer,

e € {£1}. Assume that a™ = & modulo b. Then there are z; € Z and ¢; € X5
such that
m_ 122112 1221 1221 211221 12 21 _
oM 2 2y 2 P12y 2y 2y e Py 29 1) 215 21y = Ela.
Proof. By Lemma 1.2, we find t1,2; € Z (1 <1 <9),p € X5, and ¢ € Y5

such that the matrix

Bi= oy 5yttt a2t

a” b
has the form . w] Now we can find t9, 211, 212 € Z such that

21.1,2 21

Setting z19 = t1 + t9 we obtain the conclusion. O

For any integer s > 1, we denote by the A the following polynomial
matrix in s parameters:

1,2 2,1
As(ylv"'ays):yl y2

where the last factor is the elementary matrix y;’z (resp., ygl) when s is odd
(resp., even). We set

-1
0o 1 0 1
rs<y1,...,ys>=<_1 0>As<y1,...,ys><_1 0) .

Note that T's(y1,...,ys) = As(y1,...,ys) " = Ds(y1,...,ys)T (transpose) for
even s and that Ag(y1,...,vs) = As(y1, ..., ys) "' =Ls(y1,...,ys)7 for odd s.

For any s, As(y1,.--,Ys) = Ls41(0,y1, ..., Ys)-

COROLLARY 14. Let a = <CCL Z € SLyZ, ¢ € {£1}. Assume that

for some coprime integers m,n > 1 we have o™ = +1 modulo b and o™ = +1
modulo c. Then there are ¢ € {£1},8; € Ay(ZY),~; € T3(ZY),p; € X5 and
; € Ys such that

a = Y50174Y207P10490273.

Proof. Replacing m and n by their positive multiples, we can assume that
n =m — 1. By Corollary 1.3,

a™ = £y501740203
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with 1,02 € Xs5,03 € A3(Z?), 74 € Ta(Z1), 75 € T5(Z°).
Applying Corollary 1.3 to o’ instead of a, we get

AN

" = 2yl 1apads

with ¢} € X5,05 € A3(Z%),~] € Ti(Z").
0 1
-1 0

-1
o= <_01 (1)> ()" (_01 (1)> = £051104¢273

with ¢; € Y5,73 € I's, 6; € Ay(ZY).

(o)

Conjugating by , we obtain that

Therefore
a=a™a" = £y501719207910470273
where 07 := 6305 € A7(Z7). O
PROPOSITION 1.5. Every matric o =€ SL9Z can be represented as
follows:

a = Y50174p207¢104Y276
with §; € A,(Zl),% S Pi(zi),tpi € X5 and T/JZ €Ys.

a b
Proof. Leta-(c d

proof of Lemma 1.1, can find an integer u such that |b+ au| is a positive prime
= 3 modulo 4. Then we find an integer v such that ¢ + av is a positive prime
such that

) . The case a = 0 is trivial so let a # 0. As in the

GCD(c+av—1,[b+aul| —1) =1 or 2.
Let now m = (|b+ au| —1)/2,n = ¢+ av — 1. Then GCD(m,n) =1, i.e.,
m,n are coprime, i.e., (m,n) € UmsZ. Moreover o = £1 modulo b+ au and

a™ = 1 modulo ¢ + av.
By Corollary 1.4,

v laul? = £y5o17apa0791 6123
with 5@ S Ai(Z"),%,%{ c Fi(zi),goi S X5 and 77ij S Y5
Set 75 = (—v)®! € I's5 and v} = y3(—u)b? € Ty (Z*). It remains to
observe that +15 € Ay(Z*)NT4(Z*), hence +I';(Z?) C I';12(Z*+2) for all i > 1.
In particular, both v}, —v} € T6Z°). O

Note that Theorem 1 follows from Proposition 1.5. The polynomial para-
metrization of SLsZ in Proposition 1.5 is explicit enough to see that the num-
ber of parameters is 46 and the total degree is at most 78. This is because the
degrees of A; and I'y are both s and the degree of ®5 is 13.
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2. Primitive vectors and systems of linear equations

First, we use Proposition 1.5 to obtain

LEMMA 2.1. For any (a,b) € UmsZ there are §,0; € AN(ZY), v4,v6 €
[:(Z%), ¢; € X5 and ; € Y5 such that

(a,b) = (1,0)04p174%26711040276-

Proof. Let a be a matrix in SLyZ with the first row (a, b). We write « as
in Proposition 1.5. Multiplying by the row (1,0) on the left, we obtain

(a,b) = (1,0)a = (1,0)v50174¢20791640276-

Since
(170)F8(y17 cee 7y8) = (170)A8—1(y27 o 7y8)7

we can replace v5 by 0, € A4(Z*). O
The lemma implies the following result:

THEOREM 2.2. The set UmoZ of coprime pairs of integers admits a
polynomial parametrization with 45 parameters.

For n > 3, it is easy to show that Um,,Z admits a polynomial parametriza-
tion with 2n parameters. This is because the ring Z satisfies the second Bass
stable range condition. Now we introduce this condition.

A row (a1,...,a,) € A" over an associative ring A with 1 is called wuni-
modular if a1 A+ --- + ap,A = A, i.e., there are b; € A such that ) a;b; = 1.
Let Um,, A denotes the set of all unimodular rows in A™.

We write sr(A) < n if for any (a1,...,an+1) € Umy 1A there are ¢; € A
such that (a1 + apyic1,. .., an + any1cn) € Umy,A.

For example, it is easy to see that sr(A) < 1 for any semi-local ring A and
that sr(Z) < 2.

It is shown in [15] that for any m the condition sr(A) < m implies that
sr(A) < n for every n > m. Moreover, if st(A) < m and n > m+1, then for any
(a1,...,a,) € Umy,A there are cy,...,c, € A such that o’ = (a}) € Um,—1 A
where a; = a; + apc; fori =1,...,mand a, =a; fori=m+1,...,n— 1.

Using now b; € A such that ) a}b; = 1, we obtain that

m n—1 n—1
b e [T (wi(1 = an))™™ [ (=ai)™ = (0,...,0,1).
i=1 i=1 i=1

Here 27 denotes an elementary matrix with o at position (i, j). We denote
by E,A the subgroup of GL, A generated by these elementary matrices.
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Thus, there is a polynomial matrix « € Ep,(Z < y1,- .-, Y2n+m—2 >) (with
non-commuting y;) which is a product of 2n+m — 2 elementary matrices, such
that Um,, A is the set of last rows of all matrices in a(Z2""2).

In particular, taking A = Z and m = 2 we obtain

PROPOSITION 2.3.  For any n > 3, the set UmyZ is a polynomial family
with 2n parameters.

Now we are ready to prove Corollary 2. Consider now an arbitrary system
of linear equations for k variables x with integer coefficients. We write z and
solutions as rows. Reducing the coefficient matrix to a diagonal form by row
and column addition operations with integer coefficient, we write our answer,
describing all integer solutions, in one of the following three forms:

(1) 0 =1 (there are no solutions),

(2) & = ¢ where ¢ € ZF is only solution,

(3) © = ¢+ yu where ¢ is as above, p is a N X k integer matrix of rank N,
and y is a row of N parameters (N < k).

Thus, the set X of all solutions, when it is not empty is a polynomial
family with N > 0 parameters and the degree of parametrization is at most 1.

Now we are interested in the set Y primitive solutions. In Case (1), Y is
empty. In Case (2), Y either is empty or consists of a single solution.

Case (3) in details looks like either

(4) x = ya with a € SL;Z,

or

(5) x = (a,y)a with o« € SL;Z,a € ZF-"N, 1 < N <k — 1.

In Case (4), N = k and Y is parametrized by Um yZ which is a polynomial
family by Theorem 2.2 and Proposition 2.3 provided that N > 2. When N =1,
we have a = +1, and the set Y = Um1Z = {£1} is not a polynomial family,
but consists of two constant polynomial families.

In Case (5) with a = 0 (the homogeneous case), we have N < k and the
set Y is also parametrized by Um yZ.

Now we have to deal with the case (5) with a # 0. Let d = GCD(a). Then
Y is parametrized by the set {Z = {b € Z" : GCD(d, GCD(b)) = 1}. We find
a polynomial f(t) € Z[t] whose range reduced modulo d is GL1(Z/dZ). (Find
f(t) modulo every prime p dividing d and then use the Chinese Remainder
Theorem; the degree of f(t) is at most the largest p — 1.)

Then the range of the polynomial fo(t1,t2) := f(t1) + dto consists of all
integers z such that GCD(d, z) = 1. Therefore the set Z consists of fo(z1, 22)u
with 21,290 € Z and u € UmyZ. Thus, any polynomial parametrization of
UmnZ yields a polynomial parametrization of Z (and hence Y) with two
additional parameters. By Theorem 2.2 and Proposition 2.3, the number of
parameters is at most 41 + 2k (at most 2k when N > 3.).



POLYNOMIAL PARAMETRIZATION 17

3. Quadratic equations

In this section we prove Corollary 4 which includes Corollary 3 as a par-
ticular case with Q¢ = 1,k = 2n,

Q' (x5, ..., ) = x50 + -+ + Ton—_1%2n
(Q =0 when n = 2).
We write the k-tuples in Z* as rows. Let ey, ..., e be the standard basis

in Z*.

We denote by SO(Q,Z) the subgroup of SL,Z consisting of matrices
a € SL,Z such that Q(za) = Q(z). In the end of this section, we prove that,
under the conditions of Corollary 4, the group SO(Q, Z) consists of two disjoint
polynomial families.

We define a bilinear form (, )g on Z* by (a,b)g = Q(a+,b)—Q(a)—Q(b).

Following [19], we introduce elementary transformations

7(e,u) € SO(Q, Z),
where e = e or ez and (e,u)g = 0, as follows
vr(e,u) = v+ (e,v)qu — (u,v)ge — Q(u)(e,v)ge.

LEMMA 3.1.  Let Q be as in Corollary 4. Then for any Q-unimodular
row v € ZF there are u,u' € U = Z?:s Ze; C ZF such that the first 4 entries
of the row vt (e1,u)T(ea,u’) form a primitive row.

Proof . We write v = (vy,v2,...,v). First we want to find v € U such
that Zv| + Zvs + Zvy # 0, where v’ = (v]) = v7(e1,u) (note that v] = v; for

(2

i=2,3,4). If Zvy + Zvs + Zvyg # 0, we can take u = 0.

Otherwise, since v is Q-unimodular, Zvy + Z(v, w)g # 0 for some w € U.

For v/ = (v}) = vr(e1, cw) with ¢ € Z, we have v} = v — (v,w)gc — Q(w)vac?

is a no-constant polynomial in ¢ (with v; = 0) so it takes a nonzero value for
some c. Therefore we can set u = cw with this c.
Now we want to find ' € U such that
" " " " / " /
(v],vy,v3,v) = (v],v5,v3,v4) € UMmyZ,

where
w” = () =v'7(e2,u') = v7(er,u)(ez,u’).

Since v’ is @-unimodular, there is w’ € U such that
(,Uiv V2,03, V4, (U/, w/)Q € UmsZ.

Since Zv| +Zvs+Zvy # 0, there is ¢ € Z such that (v}, ve—¢ (v, w')g, v3,v4) €

UmyZ. We set v’ = dw'. Then v'7(e2,u’) = (v) with

(v, vy, v, vy) = (v],ve — (v, w')g — c'2Q(w')v'1,v3,v4) € UmyZ.
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LEMMA 3.2. Let k > 4,Q0 € Z, Q' any quadratic form in k — 4
variables, and Q(x1,...,x;) = x1202 + 324 + Q' (x5, .., x)). Then the set X’
of integer solutions for the equation Q(x) = Qo with (x1,z2,x3,24) € UmyZ
s a polynomial family with k + 88 parameters.

Proof. When k = 4, see Examples 6 and 8. Assume now that k > 5. Let
v=(v;) € X'. Set D = v1vg + v3vq € Z. We can write

(% V3 - 1 0
<—’U4 ’U2>_a1<0 D>6

with «, 8 € SLsZ. Then we can write

k
(1,D,O,0,U5, ce ,Uk) = (1,@0,0, e ,O)T(GQ,ZUZ'EZ').
1=5

So X is parametrized by k — 5 parameters vs,...,v; and two matrices in
SLsZ. By Theorem 1, X is a polynomial family with k — 4 + 246 = k + 88
parameters. O

Combining Lemmas 3.1 and 3.2, we obtain Corollary 4.

LEMMA 3.3.  Under the conditions of Lemma 3.2, assume that k > 6 and
that Q' (x5, ..., x;) = 526 + Q" (x7,...,2%). Then the set X' is a polynomial
family with k + 2 parameters.

Proof. Let (v;) € X'. There is an orthogonal transformation a € SO4Z
(coming from SpingZ = SLyZ x SLyZ, see Example 8) such that

(v1,v2,v3,v4)a = (1,012 + V314, 0, 0).
We set (w1, ws, w3, ws) = (0,1,0,0)a~! and
w = ejwy + egwa + esws + eqwy € yAS

Then Q(w) =0 = (w,v)q.

Consider the row v' = (v}) = v7(vs, (1—vs)w). We have v} = v;+(1—vs)w;
fori=1,2,3,4, v, = 1, and v, = v; for i > 6.

Sov'T(e6, — 3 ; 456 Vi) = €5, hence X' is parametrized by 4+ (k—2) = k+2
parameters. O

Combining Lemmas 3.1 and 3.3, we obtain

PROPOSITION 3.4. Let k > 6,Q0 € Z Q" a quadratic form in k — 6
variables, and Q(x1,...,xx) = r129 + 324 + 25206 + Q" (27, ..., x). Then the
set of all Q-unimodular solutions for the equation Q(z) = Qo is a polynomial
family with 3k — 6 parameters.
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4. Chevalley—Demazure groups

We prove here Corollary 17. Let n > 2, and ey, ..., e, the standard basis
of Z".

First we prove by induction on n that SL,Z admits a polynomial fac-
torization with 39 + n(3n + 1)/2 parameters. The case n = 2 is covered by
Theorem 1. Let n > 3.

We consider the orbit e, SL(n,Z).

The orbit admits a parametrization by 2n parameters by Proposition 2.3.
Moreover, there is a polynomial matrix o € E,(Z[yi,...,y2,]) which is a
product of 2n elementary matrices, such that Um,,Z = e,a(Z").

The stationary group of e,, consists of all matrices of the form (g ?1)> ,

where v € Z" 1.

By the induction hypothesis, the stationary group can be parametrized
by 39 + (n — 1)(3n — 2)/2 + n — 1 parameters. So SL,Z can be parametrized
by

39+ (n—-—1)Bn—-2)/24n—-14+2n=39+n(3n+1)/2

parameters.

Now we consider the symplectic groups Spo,Z. We prove Corollary 17c
by induction on n. When n = 1, SpsZ = SLsZ. Assume now that n > 2.

As in [2], using that sr(Z) =2, we have a matrix

a € Span(Zy1, - - -, Yan))

such that es,a = Umo,Z. The stationary group consists of all matrices of the

g 0 w
form | I 1 ¢ |, where v! € Z*"=2 ¢ € Z, so by the induction hypothesis
0 0 1

it is parametrized by
2n —1)2+2(n—1) +41+2n—1

parameters.
Therefore Spo,Z is parametrized by

2(n —1)>4+2(n — 1) +39+2n — 14 4n = 3n® + 2n + 41

parameters.
Now we discuss polynomial parametrizations of the spinor groups

SpingnZ = Spin(Qan, Z),n > 3.

We prove Corollary 17d by induction on n. When n = 3, Spine,Z = SL4Z.
Namely SL4Z acts on alternating 4 x 4 integer matrices preserving the pfaffian,
which is a quadratic form of type z1x9 + x324 + 576 (cf., €.g., [20]).
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Assume now that n > 4. The group Spino,Z acts on Z*" via SO, Z. The
orbit e, SO2,Z of es, is the set of all unimodular (= Q2,-unimodular) solu-
tions for the equation ()2, = 0. By Proposition 3.4, the orbit is parametrized by
6n — 6 parameters. Moreover the matrices 7(x, *) come from Spine,Z so there
is a polynomial matrix in Spine,Z with 6n — 6 parameters which parametrizes
the orbit. The stationary subgroup in SOs,Z consists of the matrices of the

6 0 w
form | v'T 1 ¢ |, where
0 0 1

UT € Z2n_27c = Q2n—2(UT) € Z7ﬁ € SOz, _2Z.

By the induction hypothesis, the stationary subgroup of e; in Spine,Z is
parametrized by
4n—1)2—(n—1)+3442n—2

parameters. So Sping,Z is a polynomial family with
4n—12%=(n—1)+36+2n—2+6n—3 =4n> —n + 36

parameters.

Finally, we prove Corollary 17b by induction on n. When n = 2, SpinsZ =
SpaZ (the group SpsZ C SL4Z acts on the alternating matrices as above, fixing
a vector of length 1) and the formula works.

Let now n > 3. The orbit ;509,117 of e is the set of all unimodular
(= Q2p-unimodular) solutions for the equation Q2,41 = 0. By Proposition 3.4,
the orbit is parametrized by 3(2n + 1) — 6 = 6n — 3 parameters. Moreover
the matrices 7(x,*) come from Sping,Z so there is a polynomial matrix in
Sping,Z with 6n — 3 parameters which parametrizes the orbit. The stationary

1 0 0
subgroup of e in SOs,41Z consists of the matrices of the form c 1 v |,
T
vt 0 S

where
veZ™ 1 c=Qo1(v) €Z,5 € SOy, Z.

By the induction hypothesis, the stationary subgroup of e; in Sping,_17Z is
parametrized by 4(n—1)?+41+2n—1 parameters. So Spins,Z is a polynomial
family with

4n—1)2+414+2n —1+6n—3=4n*>+41

parameters.

Remark. As in Corollary 18, for any square-free integer D or D = 0, we
obtain a polynomial parametrization of the set of all integer n by n matrices
with determinant D. If D is not square-free, the set of matrices is a finite union
of polynomial families.
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5. Congruence subgroups

In this section we fix an integer ¢ > 2. Denote by G(q) the subgroup of
S LoZ consisting of matrices <Z Z) such that b,c € ¢Z and a—1,d—1 € ¢*Z.

This group is denoted by G(¢Z,qZ) in [17]. Note that SLy(¢?’Z) C G(q) =
G(—q) C SLoqgZ.
We parametrize G(q) by the solutions of the equation

2
1+ 24 +q T4 — 22203 =0

1+ ¢*z qr2 >
qrs3 14 ¢?xy )
We use the polynomial matrices ®4(y1,vy2,ys3,y4) and P5(y1,y2, Y3, Y4, Ys)
defined in Section 1. We denote by

as follows: x1,x9,x3, 24 — <

Xa(q) € ®4(1 + ¢°Z,qZ,qZ,1 + ¢°Z) C G(q)

the set of matrices of the form aa’ with a € G(q). Notice that X4(q)T =

Xa(g)™! = Xa(q)-
We denote by

Xs5(q) C ®5(¢°Z,4Z,9Z,¢°Z,Z) C G(q)
the set of matrices of the form
(1 +ag’e  bge? > (1 +ag’e  cq’e? >
cq 1+ dg%e bg 1+ dg%e
1+ ag’e  bge?

ith Z
with a,b,c,d, e € ,( cq 1+ dg?e

> € SLyZ. Set

Ys(q):(Xs(Q)_l)T:<—01 é>_lX5(q)<—01 (1’>

Notice that X5(¢)" = Ys(q) ™" = Y3(q) and Y5(q)" = X5(¢) ™" = Xs(q)
We also use the polynomial matrices A;, I'; defined in Section 1. Notice
that

Ai(qZ"),Ts(qZ") C G(q)

and that
Agi(qZ*) = A9y (qZ%), Ao (qZ%) ™ = T'yi(¢Z*),

Ao (qZ% M) =T 1 (qZ* 1), Mgy (qZ% 1)1 = Agi1(qZ%7 1)

for all integers ¢ > 1.
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1 2
+fq c cze) € G(q). Then

there are 6; € N;(qZY),e € {1,—1}, and ¢ € X5(q) such that the matriz ad3pds
*

LEMMA 5.1.  Leta,c,e € Z,e #0,a =

h .
as the form ccq 1+ age

Proof. As in the proof of Lemma 1.1 above, we find u,v € Z such that
lc + u(1 + ag?e)| is a prime = 3 modulo 4 and a + vg?c; = ca? where ¢; =
c+u(l + ag’e),a; € Z, and ¢ € GL1Z. Set 63 = (uge)“?(vq)®> (—creq)™? €
As3(gZ?3). Then

1+ ca?q’e ciqe 1+ calq’e —ecie?q®a?
ads = ( *1 . (—creq)t? = bll i 1

=: € G(q)

for some by,d; € Z.

d 23,2
Note that 571 = (% FAL ). set

9.— di  —bia2e’q? _ * *
’ eciq 1+ ealq’e eciq 1+ (a+wver)ge )’

Then ¢ := 710 € X5(q) and 0 = Be.

Now 6(—cevq)t?(—cuq)?>! = * *

)2,1
eciq 1+ ag’e

(—eug

ES ES ES ES
- : (—eu?! = :
e(c+u(l+aeq®))qg 1+ae ecq 14+ag®e)’
so we can take 8y := (—cevq)b?(—euq)?>' € Xa(q). O

LEMMA 5.2 (reciprocity).  Let a,b € Z and

o <1+aq2 (1+bq2)q> € Glo).

* *

Then there are ¢, ¢" € X5(q) such that

140> —(1+4 ag?
ql’za(—q)1’2<,0(—q)1’2cp/(—q)1’2 _ < q ( aq )Q> .

* *

Proof. We have

o = a(—q)1’2 — <1 +Caq2 (b _da)q3> e G(q)

2 2\ —1
Set ¢ :=a/"! <(1bt(qu)q C?{ > € X5(q), hence

o =dp= L+ag® o’ _1: d —cq”
(b—a)g d —(b—a)g 1+aq®)"
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d/ C/ 2
Now ¢"2a/ (—q)'? = (—(b C g 1 +qbq2> . Set

d c’q2 -1 d —(b- a)q?, -1
I
v = (—(b—a)q 1+bq2> ¢ 1+0bg? € X5(a),

P G-\ _ (140 (b0
L2 N2 =
hence 8 := ¢*a"(—q) "¢ <c’ 1+ bg? — d '

1+b¢> —(14ag?)q
* * ’

Finally, 3(—q)"? = < O

a b

LEMMA 5.3. Let o = <c d) € G(q) . Then there are

0 € Xu(q),0; € Ni(qZ"),v1 € T1qZu, i € Y5(q),e = £1
such that

821 2 21, 21,/ _ [ * %
(—q)* ™ Pdzpdaq™ g u71—<€b2 a)-

Proof. Set 6 = (aTa)~! € X4(q), hence

_ 1+bc—=b) alb—c)
o’ = afa 1>T:< d(c— b) 1—c(b—c)>'

By Lemma 5.1 with e = (b—c)/q, there are §; € A;(¢Z%),e € {1,—1}, and
¢ € X5(q) such that the matrix apdzpds has the form

b= <52q 1+b(*c—b)>'

1 _ _
Now we apply Lemma 5.2 to the matrix (8~1)7 = < +b(e—1b) 5aq>

* *
and find p, 4’ € Y5(q) such that

(21,21, 21,0 21 * %
p=(=q)" Ba" pg™ g (_E(1+b(0_b))q a).

Since 1+ b(c — b) = ad — b2, we have
* *
pledg)®" = py = <€b2 a> :

2
1+fq e cze) € G(q), and

e € {£1}. Then there are §; € Ni(qZ?), and ¢ € X5(q) such that the matriz
*

LEMMA 5.4. Let a,c,e € Z,e # 0, = <

adspds has the form deq 1+ age )
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Proof. We find u,v as in the proof of Lemma 5.1. Now we find w € Z
such that |c| is a prime = 1 modulo 4 where ¢ := ¢1 + (1 + ea?q?e)w. Then
there are z,as € Z such that ea? + zc2 = £'a3. We set

05 = (uge)*(vg)>! (wge) 2 (2q)*! (—c2eq)"? € A5(qZ%).

Then ) s
1 /
ads = < + ’a3q’e cz%) (—cgeq)™?
* *
1+ ca3¢’e —e'ce’q®a?
= ? b eq(e).
b1 dq
The rest of our proof is the same as that for Lemma 5.1. O

LEMMA 5.5. Let o = <Z Z) € G(q). Then there are §; € A;(qZY),

3 € T'3(qZ3), ¢ € X5(q), 0 € X4(q), and ¢ € Y5(q) such that
2
8100 05p041py3 = (i j;b) :

Proof. By Lemma 5.4 with e = ¢ = 1, we find
p = 05982 € A5(qZ°) X5(q) A2 (qZ?)

_**_dlcl
PC=\b o) " \b o)

Set = (a)Ta~! € X4(q), hence fa = (o™ 1) = <_db —ac> . Set

d d —e\ !
51:<_b a><—b CL> EAl(qZ).

d —-d\[(d ¢ * *
2 _ _
510a,0—<_b a><b a>_<b(a—d’) a2—bc’>

“(saa) 1+alay) =960

because ad’ — bc’ = 1.
By Lemma 5.1,

_ rer * *
(67) 00 = (ib 1+a(a—d’)>

such that
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with d;,0} € A;(¢Z") and ¢’ € X5(q), hence

o 2 _ pat
ﬁ7§¢72=<1+a(a d) ib) <a bc ib)

* * * *

with v;,7} € Ti(¢Z") and ¢ € Y5(q),
Finally, we set 64 = 0274 € Ay(qZ*) and v3 = yo(£d)>! € T3(¢Z3) to
obtain the conclusion. O

LEMMA 5.6.  Let o = <CCL Z) € G(q). Then there are §; € A;(qZY),

m €T1(qZ), v, ¢" € X5(q), 0 € X4(q), and ¢ € Y5(q) such that

o N1,2 2 12 7 * *
(=q) "a003p020q “¢'n = (ibgq )

-b a

a20:a<_db —ac> _ (1—b(*b—c) a(b*—c)>‘

By Lemma 5.1 with e = (b — ¢)/q, there are §; € A;(¢Z?) and ¢’ € X5(q)

. * *\
such that the matrix a“68d3pds has the form <:t(1 —b(b—))g a) = /.

1-— — +
Now we apply Lemma 5.2 to the matrix (7)™ = < b(*b c) :q)

Proof. Set = a~'(a™1)T € X4(q), so af = (1)1 = < d _C> and

instead of a. So

q1,2(ﬁT)—lcp(_q)l,Z(p/(_q)l,Q _ <a +(1—=b(b— C))Q) 7

* *

with ¢, ¢’ € X5(q), hence

(—0)* g g >t = ( 1 bfb_ 9 2) =

with 1,1’ € Y3(q). Since (1 —b(b—c)) = ad — b, we have 3'v] = <:|:qu :)

for v = (Fdg)** € I'1(¢Z). Finally, we set 1 := ¢>'v) € [(Z),02 = hg>!. O
COROLLARY 5.7. Let 3 € G(q). Then there are §; € A;(qZ?), v; €

(G2, 6.6 € Xala)0 € Xala) v € Vlha = (& ) € Gla) sueh that

528051 (—q) 2 py2¢ 03 = o,

b, |c| are positive odd primes not dividing q, and GCD(|b| — 1, |c| — 1|) = 2.
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!/ /
Proof. Let g = <(f Z,q>

cq
The case ¢ = 0 is trivial so we assume that ¢/ # 0. We find u,v,b € Z
such that a := d' + cug? is an odd prime and +b%¢®> = ¢ + av. Replacing,
if necessary, b by b 4+ wa, we can assume that b is a positive odd prime not

dividing q.
Then
;L 1,2 2,1 _ a5 * *
B = B(ug) " (vg)™" = o = <:|:b2q3 a> :
a bqg . -
Now we find ¢,d € Z such that o := cq d € G(q), c is a positive

odd prime not dividing ¢, and GCD(b—1,c¢ — 1) = 2.
By Lemma 5.6, there are 6; € A;(¢ZY), v; € T1(qZ), ¢’ € Xs5(q), §' €
X4(q), and ¢ € Y5(q) such that

* *
o = (—q)" 0083005109 2y = <j;b2q3 a) '

1

0 1
leaves invariant the sets A;(¢Z%),T;(qZ"), X5(q), X4(q), Y5(q) we can assume
that the matrices o/ and 3’ have the same last row. Then 7/ = o/3~! € I'1(¢Z)
and 7/’ = o hence

Conjugating, if necessary, this equality by the matrix <_ 0> which

* *
s = S0yl = (o ).

Now we set dg := ¢'24/, 8 = 84~y b = ¢/~ ete. O

LEMMA 58. Let a = <: i € G(q),m > 1 an integer. Then there

are 0; € Ni(qZ),v6 € T6(¢Z%),0 € X4(q),0,¢" € X5(q), and ¥ € Y5(q) such
that the matrix
81007 55004176 53

* *
has the form ( i a2m> .

Proof. As in the proof of Lemma 1.2,
b
Bi=a" = fly+ga= <f—:ga g >

*
and f? —1 ¢ ¢gZ.
By Lemma 5.5, there are &; € A;(qZ?),v3 € T'3(qZ3), and ¢ € X5(q) such
: 2 / / (f+ga)2 +gb
that the matrix 6106050041 y3 =: 8’ has the form 3’ = .

* *
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Now by Lemma 5.1 with e = g, there are §;, 9! € A;(qZ?), and ¢’ € X5(q)

such that 8" = (/6542 has the form 3" = <i*b (f —i—*ga)2> )
Since (f + ga)? = a®>™ modulo b, we have 3", = <::b a;km> with

0 € A1(gbfZ). Now we set g := 3045 and 3 := 020 to finish our proof. O

PROPOSITION 5.9.

G(q) = CsX5D4Y5CsX5C X4C5Y5Cs X5 D6Y5 D X4C3 X5 D2 X5q2Y5C5

where D; = Ni(qZ"), C; = Ti(qZ"), X5 = X5(q), Y5 = Y5(q), Xa = Xa(q).

Proof. Let B € G(q). By Corollary 5.7,

a? € DyBD2Y5(—q) 2 X505 X5C5
or (using that D2_Z-1 = (Y and Dz_l-l_1 = Dy;_1)
B € C20*C3X5D2 X502 Y505

d
We pick positive m € (|b] — 1)Z,n € (|c| — 1)Z such that n — m = 1. Then
a®" = 1 modulo bg and a®" = 1 modulo ¢g and n —m = 1.
By Lemma 5.8,

with o = 2] bq) , primes [b], |¢| not dividing ¢, GCD(|b] — 1, |c| — 1) = 2.

o1 = (::b . > S D1X4Oé2mD5X5D4Y5CGX5D3.

a2m

2m = 1 modulo b, we obtain easily that o1 € D3. So

o®™ € X4D1D3D3X5DgY5C4 X5D5 = X4 D6 X5D6Y5C4 X5Ds5,

Since a

hence
a”?m e D5 X5D,Y5Cs X5C6Xy.
Similarly,
(") €= X4 D X5DgY5C4 X5 Ds,
hence
a®™ €= C5Y5Cy X5D6Ys D X 4.
Therefore

B € Cyla™?ma’)C3X5 D0 X5qM2 Y50,
C Cy(D5X5D4Y5CsX5C6X4)(C5Y5C4 X5 D6Y5 D X14)C3 X5 Do X5¢M2Y5Co
= C6X5D4Y5Cs X506 X4C5Y5C1X5DY5 Do X403 X5 D2 X5q" 2 Y5 5.
We used that Co D5 = Cg. O
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Counting parameters, yields the following result:

COROLLARY 5.10. G(q) is a polynomial family with 93 parameters.
Moreover, there are polynomial f; € Z[yi, ..., yo3] such that

o <1+q2f1 qf2

qf3 1+q2f4> ESL2(Z[y17'-'7y93])

and a(Z%) = G(q).

Now to prove Theorem 13. Consider an arbitrary principal congruence
subgroup SLs(qZ). The factor group SLy(qZ)/SLo(¢*Z) is commutative, so it
is easy to see that it is generated by the images of G(q) and 1% Aq(qZ)(—1)%1.
Using Corollary 5.11, we conclude that SLs(gZ) is a polynomial family with
94 parameters. More precisely, we obtain

COROLLARY 5.11.  SLy(qZ) is a polynomial family with 94 parameters.

Moreover, there are polynomial f; € Z[y1,...,yo4] such that
L+qfi  af )
o= € SLo(Zlys,. ..,
< afs  1tafs) €SByl

and a(Z%) = SLy(qZ).

Erample 5.12. Let H be the subgroup of SLoZ in Example 14. The
group G(2) is a normal subgroup of index 4 in H. The group H is generated
by G(2) together with the subgroup (—1)>'A;(Z)1%!. So H is a polynomial
family with 94 parameters.

PROPOSITION 5.13.  Ewvery polynomial family H C Z* has the following
“strong approximation” property:

ifteZ,t>2, pi(l), . ,pf(t) are powers of distinct primes p;, and h; € H
for i = 1,...,t, then there is h € H such that h = h; modulo pf(i) for i =
1.t

Proof. Suppose H = «(Z") with a € Z[y1,...,yn].

Let t € Z,t > 2, pi(l), . ,pf(t) powers of distinct primes p;, and h; € H
fori=1,...,t.

We have h; = a(u?) for i = 1,...,t with «() € Z". By the Chinese

Remainder Theorem, there is u € ZY such that v = u( modulo pf(i) for
i=1,...,t '
Set h = a(u). Then h = h; modulo pf(z) fori=1,...,t. O

COROLLARY 5.14.  Let H be a subgroup of SLoZ generated by SLo(6Z)

and the matriz < 0 1

1 0) . Then H is not a polynomial family.
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Proof. We do not have the strong approximation property for H. Namely,
take t = 2,p1 = 2,p2 = 3,5(1) = s(2) = 1. The image of H in SLs(Z/2Z) is
a cyclic group of order 2, and the image of H in SLy(Z/3Z) is a cyclic group
of order 4. The strong approximation for H would imply that the the order of
the image of H in SL9(Z/6Z) is at least 8, while the image is in fact a cyclic
group of order 4. O

COROLLARY 5.15.  Let X C Z be an infinite set of positive primes. The
X is not a polynomial family.

Proof. Suppose X is a polynomial family. Let p1, po are distinct primes in
X. By Proposition 5.13, there is z € X such that z = p; modulo p; and z = po
modulo py. Then z is divisible by both p; and po, hence it is not a prime. This
contradiction shows that X is not a polynomial family. O
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