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We answer the question: when the Whitehead determinant of a semi-local ring is the abelization

of the multiplicative group?
INTRODUCTION

On November 6, 2003, R. Sujatha <sujatha@math.tifr.res.in> asked me the following
two questions:

(1) Let R be a (not necessarily commutative) semi-local ring. Is K1 (R) isomorphic to
R*/|R*, R*]?

(2) Are there any ‘special’ (non-commutative) semi-local rings for which one could
expect (1) to be true??

I referred her to [2], where Theorem 3.6 asserts that K;(R) is R*/E, where F is the
group generated by (1 + zy)/(1+ yz) with z,y in R and 1 + zy in R* and where the last
sentence in §3 says that E is not [R*, R*] in the case when R = My(Z/2Z) is the ring of
2 by 2 matrices over a field of two elements (Z is the ring of integers). Moreover, in this
case the group K;(R) is trivial while R/[R*, R*] has order two. Therefore E # [R*, R*]
whenever R has a ring morphism onto My(Z/2Z), see Theorem 1 below.

Recall [1, p. 503] that a ring R is semi-local if and only if the ring R/rad(R) is
isomorphic to a finite product of matrix rings over division rings D where rad(R) is the
Jacobson radical of R. The Whitehead determinant GL,,(R) — K7 (R) was introduced for
any associative ring R with 1 and any integer n > 1 in [1].

Here is another counter example to (1). Let R = T5(Z/2Z) be the ring of 2 by 2 upper
triangular matrices over Z/2Z. In this case, R/rad(R) is isomorphic to (Z/22) x (Z/2Z),
the multiplicative group R* = E has order two and its commutator subgroup is trivial.

THEOREM 1. Let R be an associative ring with 1 such that st(R) =1 and R has
a factor ring isomorphic to Mo(Z/2Z) or To(Z/2Z). Then the kernel of the Whitehead
determinant R* — Ki(R) is bigger than [R*, R*].

Byl1], [2], R satisfies the first Bass stable range condition, which we write as sr(R) =
1, if R/rad(R) is isomorphic to a product of full matrix rings over division rings D, e.g.,
R is semi-local.



So to answer the second question of Sujatha we must exclude factors in R/rad(R)
which are isomorphic to Ms(Z/2Z) (and hence have order 16), and we do not want more
that one factor isomorphic to Z/2Z. We do not need the condition that the number of
factors is finite.

THEOREM 2. Let R be an associative ring with 1 such that R/rad(R) is product
of full matrix rings over division algebras. Assume that none of these matriz rings is

isomorphic to My(Z/27) and that no more than one of these matriz rings has order 2.
Then E = [R*, R*], hence K1(R) = R*/[R*, R*].

Proor of THEOREM 1

Consider an isomorphism R/J = R’ where J is an ideal of R and the factor ring
R’ is isomorphic to My (Z/27) or To(Z/27Z). We set x' = <(1] 8) Yy = <8 é) € R.
Then (1 + 2'y")(1 +y'2’)~t =1+ 2'y’ € R™* has order 2 and belongs to the kernel of the
Whitehead determinant, but does not belong to [R"™*, R”*]. Recall that [R"*, R”*] has order
3 in the case R’ = M5(Z/2Z) and order 1 in the case R’ = T»2(Z/27).

Let 2,y € R be the inverse images of z/,y’. We set z = (1 + zy)? — 1 € J. We have
R(1+xy)+ Rz = R hence R(1+xy)+ Rzzy = R. Since sr(R) =1, there is r € R such that
R(1+zy+azzy) = R. By [3, Theorem 2.6], 1 +zy+azzy € R*. Set 9 = x+azx € x+ J.

On one hand, the image of (1 +z1y)(1+yz1)~! in KR is trivial. On the other hand,
(1 + zoy)(1 + yzo)~t is not in [R*, R*] because otherwise its image 1+ 'y’ in R’ would
be in [R"™*, R™].

REMARK. The condition sr(R) = 1 in Theorem 1 is not redundant. For example, the
free ring R = Z < t1,t2 > has both T5(Z/2Z) and Ms(Z/2Z) as factor rings. Namely,

t o ((1) (1)) € Ty (2/22), ts (8 }) € Th(2/27)

and

£ (8 (1)) € My(Z2/22), s (? 8) € Th(2/27).

On the other hand,

Ki(R) = K,(Z) = {+1} = Z* = R* = R*/[R*, R"].

Proor of THEOREM 2

We start our proof with two lemmas.

LEMMA 1. Let D be a division algebra, n > 1 an integer, and R = M, (D) the ring of
n X n matrices over D. When n = 1, assume that D has at least 3 elements. Then every
element r in R is the sum of two units.



Proof. When n = 1, we pick any u # 0, —r and write r = u + (r — u) with u,r —u €
R* = D*.

When n > 2, multiplying r on left and right by units (i.e., by invertible matrices)
we can assume that all diagonal entries of r are zeros. Then we write r as sum of an
upper triangular matrix with ones along the diagonal and an lower triangular matrix with
negative ones along the diagonal. QED.

REMARK. 1 in D = Z/2Z is not the sum of two units.

LEMMA 2. Let D be a division algebra, n > 1 an integer, and R = M, (D). Then
every f € R* = GL,(D) is a product uv with u,v,u — 1,v — 1 € R* with the following
three exceptions:

(a) card(R) =3 and f = —1,
(b) card(R) = 2,

(c) card(R) = 16 and f is order 2 (i.e., f = (é 1) , <1 (1)), or <(1) é)

Proof. When D has at least 4 elements, we replace f by a similar matrix and assume
that f = u/dl where v’ is an upper triangular matrix with ones on the diagonal, d is a
diagonal matrix, and [ is a lower triangular matrix with ones on the diagonal. Then we
write d = d'd” with diagonal matrices d’, d”’ without ones on the diagonal. Then we set
u=u'd,v=d"l € R*. We have f = wv with u,v,u—1,,v—1, € GL,(D).

Assume now that D has only 3 elements and n > 2. Replacing f by a similar matrix,
we can assume that f is an upper block triangular matrix, where each block is either a
companion matrix of size k x k with k£ > 2, or 15, or 13, or —15, or —13.

We used that (jal 0

) with a companion matrix g is similar to either companion

:l:12 *
0 h

When f = 1, we have f = uv with u =v = —1;.

When f = —1;, with k = 2 or 3, we have f = wv with u = —v~! being the companion
matrix of a polynomial not vanishing at both 1 and -1 (e.g., p(z) = A +1 when k = 2 and
p(x) = X3 = XA+ 1 when k = 3.

Let now f be a companion matrix of size k x k with & > 2. There is an elementary
matrix g such that fg is a companion matrix whose eigenvalues do not include -1. Then
f=wv withu=—fg,v=—g 1.

Assume now that D has only 2 elements and n > 2. Our matrix f is similar to a direct
sum of matrices each of them is either a companion matrix with 1 not an eigenvalue or an
upper triangular matrix. Therefore it suffices to prove our conclusion in the following four
cases:

(1) f =1, (the identity matrix) with n > 2,

(2) all eigenvalues of f are 1 (i.e., the characteristic polynomial of f is (A —1)", i.e.,
f is similar to an upper triangular matrix) and n > 3,

(3) 1 is not an eigenvalue of f (i.e., f — 1, € GL,(D)).

(4) f is a direct sum of a companion matrix with 1 not an eigenvalue and a k X k
upper triangular matrix with £ < 2.

matrix or with a companion matrix h (or h could be absent).



In Case (1), f =1, = uv = uu~" where u is the companion matrix of the polynomial
AT+ A+ L

In Case (2), we can assume that f is an upper triangular matrix and that all entries
of f outside the main diagonal and the line above are zeros. Also in view of Case (1) we
can assume that fio = 1. Let v be the companion matrix for the polynomial A +\"~1 +1,
i.e., f has ones at the line below the main diagonal and at the first and last positions
at the last column while all other entries of f are zeros. Set v = u~'f. The first row of
vis (0,...,0,1), and if cross out the first row and the last column, we obtain an upper
triangular matrix with ones along the main diagonal. So v — 1 € R*.

In Case (3), f = uwv with u = f2,v = f~!. Notice that u —1 = f2—1=(f—-1)?2 € R*
andv—1=f1t—1=f"1(f-1) €R"

In Case (4), f is similar to a companion matrix with an eigenvalue 1. So assume now
that n > 3 and f is a companion matrix with an eigenvalue 1. We proceed by induction
on n.

0 0 1 0 1 0
Letn=3,f=[1 0 a ]| witha+b=0.Wesetu=[|0 -1 1], v=u"tf=
0 1 b 1 0 O
0 1 b
0 0 1 . Then f =wuv and u,v,u—1,v—1€ R*.
1 0 1+a
0 0 0 1 0 01 0
Let n=4,f = (1] (1) 8 Z with a + b+ c = 0. We set u = (1) 8 1 1 ,U =
0 0 1 ¢ 0 1 0 O
1 1 0 a+bd
v=u"lf= 8 8 (1) i . Then f =wuv and u,v,u—1,v—1€ R*.
1 0 0 1+a

Let now n > 5 and f is a companion matrix. We set g =

S O
o = O

1
1 |®l,_3=9g1¢€
1

GL, (D). The matrix gfg~"' has the form

a b . 15 0 -1 15 a~ b
(c d) - (ca‘1 1n_2) (a @ (d—ba™"c) ( 0 1n_2)

. 1 . . . .
with a = (1) 1] = a~2. By the induction hypothesis, we can write d — ba~lc) = u'v’

with Ul, UI, u — ln_g,’Ul —1,_9 € GLn_Q(D>
-1 —1
Then gfg~" = <a O/) (ao ;,) , hence g = uv with

x o u
1 f{at 0 1 fa ' x
“:91<* o ev=9""y o )9EGL.(D)
and u — 1,,v—1, € GL,(D). QED.



REMARK. All exceptions in Lemma 2 are necessary.

COROLLARY 1. Let n > 1 be an integer, D a division ring, R = M, (D), and y € R.
Then for any x € R such that 1 + xy € R* there are x1,x2 € R* such that

T =21+ X2+ T1YT2

and 1+ z1y,1 + 22y € R* with the following four exceptions:
(a) card(R)=3 and xy # 0,
(b) card(R)=2 and either x =1 ory =1,
(c) card(R)=16 and y € R* and 1+ xy has order 2 in R*,
(d) card(R)=16 and the matrizy € Ms(D) has rank 1 and either xy or yx is nonzero.

Proof. Note that for any associative ring R and any y € R, the binary operation
(a,b) — aob=a+ b+ ayb is a group operation on the set {a € R : 1+ ay € R+}. The
neutral element is 0. The inverse of a is —(1 + ay)~'a = —a(1 + ya)~!. Note that this
inverse belongs to R* if and only if a € R*.

In the case when y = 0, this group is the additive subgroup of R. In the case when
y = 1, the group is essentially R*. Namely, a+b+ab= (1+a)(1+b)— 1. For an arbitrary
y, we have (1 +ay)(1+by) =1+ (a+b+ayb)y =1+ (aob)y and (1 + ya)(1 + yb) =
1+yla+b+ayb) =1+ y(aob).

For any u,v € R*, we can multiply the equation x = x1 4+ 2 + z1yx2 by u on the left
and v on the right obtaining a similar equation with z, z;, y replaced by uzv, uzr;v, v tyu~!
respectively and preserving the conditions 1 + zy, 1 + z;y € R*.

In our special case R = M, (D), we can choose u,v such that y = y? is a diagonal
matrix with £ ones on the diagonal followed by n — k zeros where 0 < k < n.

When k£ = 0, our statement follows from Lemma 1. When k = n, our statement
follows from Lemma 2.

Assume now that 1 <k <n—1 (son > 2).

We write the given matrix x and unknown matrices x; in block form:

a b a; b .
:L'—(C d)ﬁbﬁ'—(q di)WlthaaazEMkD,etc.

a1 +az +aiaz by +bo —|—a1b2)

PLt Z2 ot Tiype = <C1 +c2+craz  dy +da + c1by

The condition 1, + 2y € GL,, (D) means that 1 +a € GLk(D).
First we prove our corollary in the following case:

(1) ax 1 = wv with u,v,u—1g,v— 1 € GLK(D) and d = dy +ds with d;,d; — 1,,_j, €
GL,_;(D).

In this case, our proof is easy: we set

. u—lk b . U—lk 0
331—( 0 dl),l‘2—< c dQ)GGLn(D)

with 1,, + z;y € GL,(D) and = = z1 + 22 + T1yx2.
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. . . . T
In some cases we will prove Corollary 1 using induction on n. We write x = (‘Z J )

/
and y = (% 8) wth o',y € M,_1(D),d € D. Suppose that the following condition
holds:
(2) o’ =) + b + 2y y/'zh, with 2}, 1,1 + 2}y’ € GL,,_1(D).

Then we prove our conclusion as follows.
If d = 0, or card(D) # 2, then we write d' = d} + d, with d},d, € D x. Then

v zp 0 :
we set x1 = , | T = ; , | € GL,(D) with x = x1 + x2 + z1yx2 and
0 d ¢ dj
1+ 2,y € GL, (D).
Assume now that d’ # 0 and card(D) = 2 hence d’ = 1.

If n—k > 2, then we can be reduced to the case d’ = 0 replacing x and y by x ( 10k 2)

~1
and y = (10k 2) y with a matrix g € GL,_;(D).
Assume now that d’ =1, card(D) =2 and n — k = 1.

If o' # 0, we can be reduced to the case d’ = 0 replacing = and y by (1”_1 O) x

* 1
lp—1 O
andyz( *1 1)3/

If ¢ # 0, we can be reduced to the case d’ = 0 replacing x and y by = (1”0—1 *) )

1,1 *
andy:y( 01 1)y.

Assume now that card(D) =2,n—k=1,d =1,/ =0, = 0.
If 2/ # 0, then o' + 251 +1, 1 # 0. So there are a column b and a row c such that
cleyt a1, )b=1 Nowweset u=a +1, 1, v=ah+1,_1 € GL,_1(D),

() ub e b
T = < c 1—|—cac'1_1ub> T2 = <cv 1+ coah b € GLn(D).

Then x = x1 + 2 + x1yz2 and 1 + x;y € GL, (D).
Assume now that card(D) =2,n—k=1,d =1,/ =0, =0,2' = 0.

u+1,_o 0 0
If n >4, let uyu — 1,2 € GL,_2(D). We set z; = 0 0 1],z0 =
0 1 1
u 41,2 0 0
0 0 1] €GL,(D). Then z = x1 + 23 + z1yxs and 1 + z;y € GL, (D).
0 1 1

Finally, assume that card(D) = 2,n — k = 1,d' = 1,0’ = 0,¢ = 0,2/ = 0,n < 3
Since z},2} + 1,—1 € GL,—1(D), we conclude that n > 3. Son = 3,k = 2. We set z1 =
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€ GL3(D). Then =z = = x1 + T2 + T1YT2

o~ OO
O O =
o = O
&

)

I
—_ o O
— O
O = =
o O O
o O O
_ o O

Thus, we have proved the corollary in Cases (1) and (2). In general, proceeding by
induction on n when n — k > 2 and using Lemma 2 when n — k = 1, we are reduced to the

following four cases (we write x = (Z Z) again):

.k =2, card(D) = 2, and 1 + a has order 2;

0 1 1 b—1
In Case (3), we set o1 = <1 d—bc—l—b—l—c+1>’x2 - <C+1 b6+b—0> )
1 b

GLy(D). Then z = (c d) =x10xy = T1 + Ty + T YTa.

In Case (4), we have = = 0 O)leoxgwitha:1:<0 1),:(:2:(() 1)6

0 d 1 d 1 1
GLQ(D), 15 + Ty € GLQ(D)
In Case (5), the condition 1 + ay € GL3(D) means a = 0.
Replacing x, z;,y by uzv, ur;v, v lyu~! = y respectively with u,v € GL3(D) of the

form (1) S) , we can assume that:
d22 = 0 in the case when b = 0,c = 0;
b= (}) in the case when b # 0;

¢ = (1,1) in the case when ¢ # 0.

When b =0 and ¢ = 0, we write d = (21 602) € My (D). Then
3
0 0 O
xr=10 e e | =x10x9 =121+ 22+ T1Yx2
0 €3 0
with
0 1 0 0 1 0
xr1 = 1 e1 e | ,x0= 1 1 0 EGLg(D),ln—f—JJZyEGLg(D)
0 ez 1 0 0 1

0 1 1 0O 1 0 0 0 1
=10 e e | =1 e ey o1 O 1 ;
0 e3 ey 0 e3 1 0 1 es+1



0 0 0 0 1 0 0 1 0
z=|1 e ea | =11 e e+1]o|0 1 1 :
1 e3 ey 0 e3 1 1 0 es+1
0 1 1 0 1 0 0 0
z=|1 e e | =10 eq 1 Jo|l1l 0 ey+1
1 ez ey 1 es+1 ey 0 1
In Case (6), replacing x,x;,y by uzu™! ur;u~t uyu™! = y respectively with u €
GL3(D) of the form <; (1) , we can assume that a = <8 é
Replacing z, x;,y by uxv,uzr;v,v " 'yu~' = y respectively with u = <1*2 (1)> =
1 % 0 1 0
( 02 1) € GL3(D) (which does not change a), we can assume that z = | 0 0 ¢
€9 0 d

If e =0, we set 1 =

If e; =0, we set z1 =

= =)

—_ O = =
_ oo O =

- L

1

1

0

d
1 1 0

Ifei,=es=1 weset z1 = | 1 1 , Ty = 0 0| €GL3(D). QED.
0 1 d+1 1 1

REMARK. All exceptions in Corollary 1 are necessary.

ProposITION 1. Let R be an associative ring with 1 such that R/rad(R) is product
of full matrix rings over division rings. Let y € R and assume that y belongs to every ideal
of index 2,3 or 16 in R. Let € R by such that 1 + xy € R* and that = belongs to any
ideal of index two in R. Then there are x1, x5 € R+ such that 1 +x;y € R* for i = 1,2 and
r=210%2 =21 + T2+ X1YTa.

Proof. Using Corollary 1, we can find the components z}, x5 of all z1,xs in every
matrix ring R’ with card(R’) # 2,3, or 16. In the case of card(R’)=2, we set x| = 2, = 1.
In the case of card(R’')=3, we set z} = z}, = —a’. In the case of card(R')=16, we use
Lemma 1.

Then z1, xo are defined modulo rad(R), z1,x2,1 +z1y, 1 + 22y € R*, and = x1 0o x5
modulo rad(R). Now we replace 2 by (—(1+2z1y) 12z1)ox € R* and obtain that 1+zoy €
R* and x = x1 o x9. (Recall that (—(1 + z1y) t2z1) oz =0.) QED.

COROLLARY 2. Under the conditions of Proposition 1, (1+zy)(1+yx) ™!
of two commutators.

Proof. We have

1 +zy = (1+z1y)(1+ 229)
and

1 +yx = (1+yw)(1+yxs)

is a product



with z1, 29 € R*. So
(L4 ziy) (L +yz) ™ = (L zay)a; (L4 ay) ey = [L+ 2y, a7
is a commutator for ¢ = 1, 2, hence
(14 2y) (1 +yx) ™" = (1+ 21y) (1 + 22y) (1 + yo) " (1 4 yar)

= (14 z1y)[1 + 22y, 25 (1 + yay) !
= 1+ 21y, 27 (1 + gz ) (1 + 2oy) (1 + yar) (1 yan)zy (1 +yar) 7Y

is a product of two commutators.

COROLLARY 3. Let R be an associative ring with 1 such that R/rad(R) is product of
full matrix rings over division rings. Let x,y € R and 1+ xy € R*. Assume that y belongs
to every ideal of index 16 in R and that both x and y belong to every ideal of index 2 in
R. Then (1 + zy)(1 +yx)~!is a product of four commutators.

Proof. If R has no ideals of index 3 or y belongs to all such ideals J of index 3 in R,
then (1 + xy)(1 + yz)~! is a product of two commutators by Corollary 2.

Otherwise, we find x1, x5 € R* such that 14+ z;y € R* and 2’ = 2/ oz}, in every factor
matrix ring R’ except for R’ such that card(R’) = 3 and z'y’ # 0. (If card(R’) = 16, we
use Lemma 1.) In the exceptional case, z} = 24, =2’ =y’ = +1 and 2} oz}, = 0.

We set & = xyoxg02. Then 1+ 32 € R*. Weset § = y+ 2 +y + y2? € R with
1+ 2y € R*. Then gy belongs to every ideal .J of index 2 or 3 in R. By Corollary 2,

A4+z)1+g2) ' =0 +ayQ+2)Q+2) 1 4+yz) !

= (1 +ay)(1+y2) " = (1+219) (1 +229) (1 + 2y)((1 + yo1) (1 + ya2) (1 +yz)) ™
is a product of two commutators, hence (1+xzy)(1+yz) ! is a product of four commutators.
QED.

ProposITION 2. Under the conditions of Theorem 2, let z,y € R and 1 + xy € R*.
Then (1 + zy)(1 + yx)~! is a product of five commutators.

Proof. If R has no ideals of index 2 or there is (exactly one) such an ideal J, and
2,y € Jo, then (1 + zy)(1+ yx)~! is a product of four commutators by Corollary 3.

If y ¢ Jo, then z € Jo (since 1 + xy € R*). By Lemma 1, there is yo € R* such that
1+2xyo € R* (ie., z+ yo_l € R*. Set y =y + yo + yxxo. By Corollary 3,

L+ 2g)(1+gz)~" = (1+ay)(1+zyo) (1 +yor) (1 +yz) ™

is a product of four commutators, hence (1+zy)(1+yx) ! is a product of five commutators
(because (14 zyo)(1 + yox) ! is a commutator).

If x ¢ Jy, then y € Jo. By Lemma 1, there is ¢y € R* such that 1 4+ zgy € R*. Set
T = x + x¢ + xyxg. By Corollary 3,

AI+ay)Q+yd) = (A +yd)A+2y) )" = A +2y) 1+ zoy) (L +yzo) (1 +yz) "
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is a product of four commutators, hence (1+xy)(1+yz) ! is a product of five commutators.
QED.

Now we can finish our proof of Theorem 2. If R be an associative ring with 1 such
that R/rad(R) is product of full matrix rings over division rings, then by [2, Theorem 3.6],
the kernel of the Whitehead determinant R* = GL,(R) — K;(R) is the subgroup E of R*

generated by all (1 + zy)(1+yx)~! with z,y € R and 1+ xy € R*. So Theorem 2 follows
from Proposition 2.
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