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We answer the question: when the Whitehead determinant of a semi-local ring is the abelization

of the multiplicative group?

INTRODUCTION

On November 6, 2003, R. Sujatha <sujatha@math.tifr.res.in> asked me the following
two questions:

(1) Let R be a (not necessarily commutative) semi-local ring. Is K1(R) isomorphic to
R∗/[R∗, R∗]?

(2) Are there any ‘special’ (non-commutative) semi-local rings for which one could
expect (1) to be true??

I referred her to [2], where Theorem 3.6 asserts that K1(R) is R∗/Ẽ, where Ẽ is the
group generated by (1 + xy)/(1 + yx) with x, y in R and 1 + xy in R∗ and where the last
sentence in §3 says that Ẽ is not [R∗, R∗] in the case when R = M2(Z/2Z) is the ring of
2 by 2 matrices over a field of two elements (Z is the ring of integers). Moreover, in this
case the group K1(R) is trivial while R/[R∗, R∗] has order two. Therefore Ẽ 6= [R∗, R∗]
whenever R has a ring morphism onto M2(Z/2Z), see Theorem 1 below.

Recall [1, p. 503] that a ring R is semi-local if and only if the ring R/rad(R) is
isomorphic to a finite product of matrix rings over division rings D where rad(R) is the
Jacobson radical of R. The Whitehead determinant GLn(R) → K1(R) was introduced for
any associative ring R with 1 and any integer n ≥ 1 in [1].

Here is another counter example to (1). Let R = T2(Z/2Z) be the ring of 2 by 2 upper
triangular matrices over Z/2Z. In this case, R/rad(R) is isomorphic to (Z/2Z)× (Z/2Z),
the multiplicative group R∗ = Ẽ has order two and its commutator subgroup is trivial.

THEOREM 1. Let R be an associative ring with 1 such that sr(R) =1 and R has
a factor ring isomorphic to M2(Z/2Z) or T2(Z/2Z). Then the kernel of the Whitehead
determinant R∗ → K1(R) is bigger than [R∗, R∗].

By[1], [2], R satisfies the first Bass stable range condition, which we write as sr(R) =
1, if R/rad(R) is isomorphic to a product of full matrix rings over division rings D, e.g.,
R is semi-local.
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So to answer the second question of Sujatha we must exclude factors in R/rad(R)
which are isomorphic to M2(Z/2Z) (and hence have order 16), and we do not want more
that one factor isomorphic to Z/2Z. We do not need the condition that the number of
factors is finite.

THEOREM 2. Let R be an associative ring with 1 such that R/rad(R) is product
of full matrix rings over division algebras. Assume that none of these matrix rings is
isomorphic to M2(Z/2Z) and that no more than one of these matrix rings has order 2.
Then Ẽ = [R∗, R∗], hence K1(R) = R∗/[R∗, R∗].

PROOF of THEOREM 1

Consider an isomorphism R/J = R′ where J is an ideal of R and the factor ring

R′ is isomorphic to M2(Z/2Z) or T2(Z/2Z). We set x′ =

(

1 0
0 0

)

, y′ =

(

0 1
0 0

)

∈ R′.

Then (1 + x′y′)(1 + y′x′)−1 = 1 + x′y′ ∈ R′∗ has order 2 and belongs to the kernel of the
Whitehead determinant, but does not belong to [R′∗, R′∗]. Recall that [R′∗, R′∗] has order
3 in the case R′ = M2(Z/2Z) and order 1 in the case R′ = T2(Z/2Z).

Let x, y ∈ R be the inverse images of x′, y′. We set z = (1 + xy)2 − 1 ∈ J. We have
R(1+xy)+Rz = R hence R(1+xy)+Rzxy = R. Since sr(R) =1, there is r ∈ R such that
R(1+xy +azxy) = R. By [3, Theorem 2.6], 1+xy +azxy ∈ R∗. Set x0 = x+azx ∈ x+J.

On one hand, the image of (1+x1y)(1+ yx1)
−1 in K1R is trivial. On the other hand,

(1 + x0y)(1 + yx0)
−1 is not in [R∗, R∗] because otherwise its image 1 + x′y′ in R′ would

be in [R′∗, R′∗].

REMARK. The condition sr(R) = 1 in Theorem 1 is not redundant. For example, the
free ring R = Z < t1, t2 > has both T2(Z/2Z) and M2(Z/2Z) as factor rings. Namely,

t1 7→

(

1 1
0 0

)

∈ T2(Z/2Z), t2 7→

(

0 1
0 1

)

∈ T2(Z/2Z)

and

t1 7→

(

0 1
0 0

)

∈ M2(Z/2Z), t2 7→

(

0 0
1 0

)

∈ T2(Z/2Z).

On the other hand,

K1(R) = K1(Z) = {±1} = Z∗ = R∗ = R∗/[R∗, R∗].

PROOF of THEOREM 2

We start our proof with two lemmas.

LEMMA 1. Let D be a division algebra, n ≥ 1 an integer, and R = Mn(D) the ring of
n× n matrices over D. When n = 1, assume that D has at least 3 elements. Then every
element r in R is the sum of two units.
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Proof. When n = 1, we pick any u 6= 0,−r and write r = u + (r − u) with u, r − u ∈
R∗ = D∗.

When n ≥ 2, multiplying r on left and right by units (i.e., by invertible matrices)
we can assume that all diagonal entries of r are zeros. Then we write r as sum of an
upper triangular matrix with ones along the diagonal and an lower triangular matrix with
negative ones along the diagonal. QED.

REMARK. 1 in D = Z/2Z is not the sum of two units.

LEMMA 2. Let D be a division algebra, n ≥ 1 an integer, and R = Mn(D). Then
every f ∈ R∗ = GLn(D) is a product uv with u, v, u − 1, v − 1 ∈ R∗ with the following
three exceptions:

(a) card(R) = 3 and f = −1,

(b) card(R) = 2,

(c) card(R) = 16 and f is order 2 (i.e., f =

(

1 1
0 1

)

,

(

1 0
1 1

)

, or

(

0 1
1 0

)

.

Proof. When D has at least 4 elements, we replace f by a similar matrix and assume
that f = u′dl where u′ is an upper triangular matrix with ones on the diagonal, d is a
diagonal matrix, and l is a lower triangular matrix with ones on the diagonal. Then we
write d = d′d′′ with diagonal matrices d′, d′′ without ones on the diagonal. Then we set
u = u′d′, v = d′′l ∈ R∗. We have f = uv with u, v, u− 1n, v − 1n ∈ GLn(D).

Assume now that D has only 3 elements and n ≥ 2. Replacing f by a similar matrix,
we can assume that f is an upper block triangular matrix, where each block is either a
companion matrix of size k × k with k ≥ 2, or 12, or 13, or −12, or −13.

We used that

(

±1 0
0 g

)

with a companion matrix g is similar to either companion

matrix or

(

±12 ∗
0 h

)

with a companion matrix h (or h could be absent).

When f = 1k, we have f = uv with u = v = −1k.
When f = −1k with k = 2 or 3, we have f = uv with u = −v−1 being the companion

matrix of a polynomial not vanishing at both 1 and -1 (e.g., p(x) = λ2 +1 when k = 2 and
p(x) = λ3 − λ + 1 when k = 3.

Let now f be a companion matrix of size k × k with k ≥ 2. There is an elementary
matrix g such that fg is a companion matrix whose eigenvalues do not include -1. Then
f = uv with u = −fg, v = −g−1.

Assume now that D has only 2 elements and n ≥ 2. Our matrix f is similar to a direct
sum of matrices each of them is either a companion matrix with 1 not an eigenvalue or an
upper triangular matrix. Therefore it suffices to prove our conclusion in the following four
cases:

(1) f = 1n (the identity matrix) with n ≥ 2,

(2) all eigenvalues of f are 1 (i.e., the characteristic polynomial of f is (λ− 1)n, i.e.,
f is similar to an upper triangular matrix) and n ≥ 3,

(3) 1 is not an eigenvalue of f (i.e., f − 1n ∈ GLn(D)).
(4) f is a direct sum of a companion matrix with 1 not an eigenvalue and a k × k

upper triangular matrix with k ≤ 2.
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In Case (1), f = 1n = uv = uu−1 where u is the companion matrix of the polynomial
λn + λ + 1.

In Case (2), we can assume that f is an upper triangular matrix and that all entries
of f outside the main diagonal and the line above are zeros. Also in view of Case (1) we
can assume that f12 = 1. Let u be the companion matrix for the polynomial λn +λn−1 +1,
i.e., f has ones at the line below the main diagonal and at the first and last positions
at the last column while all other entries of f are zeros. Set v = u−1f. The first row of
v is (0, . . . , 0, 1), and if cross out the first row and the last column, we obtain an upper
triangular matrix with ones along the main diagonal. So v − 1 ∈ R∗.

In Case (3), f = uv with u = f 2, v = f−1. Notice that u− 1 = f2− 1 = (f − 1)2 ∈ R∗

and v − 1 = f−1 − 1 = f−1(f − 1) ∈ R∗.
In Case (4), f is similar to a companion matrix with an eigenvalue 1. So assume now

that n ≥ 3 and f is a companion matrix with an eigenvalue 1. We proceed by induction
on n.

Let n = 3, f =





0 0 1
1 0 a
0 1 b



 with a + b = 0. We set u =





0 1 0
0 −1 1
1 0 0



 , v = u−1f =





0 1 b
0 0 1
1 0 1 + a



 . Then f = uv and u, v, u− 1, v − 1 ∈ R∗.

Let n = 4, f =







0 0 0 1
1 0 0 a
0 1 0 b
0 0 1 c






with a + b + c = 0. We set u =







0 0 1 0
0 0 1 1
1 0 1 1
0 1 0 0






, v =

v = u−1f =







1 1 0 a + b
0 0 1 c
0 0 0 1
1 0 0 1 + a






. Then f = uv and u, v, u− 1, v − 1 ∈ R∗.

Let now n ≥ 5 and f is a companion matrix. We set g =





1 0 1
0 1 1
0 0 1



⊕1n−3 = g−1 ∈

GLn(D). The matrix gfg−1 has the form
(

a b
c d

)

=

(

12 0
ca−1 1n−2

)

(a⊕ (d− ba−1c)

(

12 a−1b
0 1n−2

)

with a =

(

0 1
1 1

)

= a−2. By the induction hypothesis, we can write d − ba−1c) = u′v′

with u′, v′, u′ − 1n−2, v
′ − 1n−2 ∈ GLn−2(D).

Then gfg−1 =

(

a−1 0
∗ u′

) (

a−1 ∗
0 v′

)

, hence g = uv with

u = g−1

(

a−1 0
∗ u′

)

g, v = g−1

(

a−1 ∗
0 v′

)

g ∈ GLn(D)

and u− 1n, v − 1n ∈ GLn(D). QED.
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REMARK. All exceptions in Lemma 2 are necessary.

COROLLARY 1. �Let n ≥ 1 be an integer, D a division ring, R = Mn(D), and y ∈ R.
Then for any x ∈ R such that 1 + xy ∈ R∗ there are x1, x2 ∈ R∗ such that

x = x1 + x2 + x1yx2

and 1 + x1y, 1 + x2y ∈ R∗ with the following four exceptions:
(a) card(R)=3 and xy 6= 0,
(b) card(R)=2 and either x = 1 or y = 1,
(c) card(R)=16 and y ∈ R∗ and 1 + xy has order 2 in R∗,
(d) card(R)=16 and the matrix y ∈ M2(D) has rank 1 and either xy or yx is nonzero.

Proof. Note that for any associative ring R and any y ∈ R, the binary operation
(a, b) 7→ a ◦ b = a + b + ayb is a group operation on the set {a ∈ R : 1 + ay ∈ R∗}. The
neutral element is 0. The inverse of a is −(1 + ay)−1a = −a(1 + ya)−1. Note that this
inverse belongs to R∗ if and only if a ∈ R∗.

In the case when y = 0, this group is the additive subgroup of R. In the case when
y = 1, the group is essentially R∗. Namely, a+ b+ab = (1+a)(1+ b)− 1. For an arbitrary
y, we have (1 + ay)(1 + by) = 1 + (a + b + ayb)y = 1 + (a ◦ b)y and (1 + ya)(1 + yb) =
1 + y(a + b + ayb) = 1 + y(a ◦ b).

For any u, v ∈ R∗, we can multiply the equation x = x1 + x2 + x1yx2 by u on the left
and v on the right obtaining a similar equation with x, xi, y replaced by uxv, uxiv, v−1yu−1

respectively and preserving the conditions 1 + xy, 1 + xiy ∈ R∗.
In our special case R = Mn(D), we can choose u, v such that y = y2 is a diagonal

matrix with k ones on the diagonal followed by n− k zeros where 0 ≤ k ≤ n.
When k = 0, our statement follows from Lemma 1. When k = n, our statement

follows from Lemma 2.
Assume now that 1 ≤ k ≤ n− 1 (so n ≥ 2).
We write the given matrix x and unknown matrices xi in block form:

x =

(

a b
c d

)

, xi =

(

ai bi

ci di

)

with a, ai ∈ MkD, etc.

Then

x1 + x2 + x1yx2 =

(

a1 + a2 + a1a2 b1 + b2 + a1b2

c1 + c2 + c1a2 d1 + d2 + c1b2

)

.

The condition 1n + xy ∈ GLn(D) means that 1 + a ∈ GLk(D).
First we prove our corollary in the following case:

(1) a∗1k = uv with u, v, u−1k, v−1k ∈ GLk(D) and d = d1 +d2 with di, di−1n−k ∈
GLn−k(D).

In this case, our proof is easy: we set

x1 =

(

u− 1k b
0 d1

)

, x2 =

(

v − 1k 0
c d2

)

∈ GLn(D)

with 1n + xiy ∈ GLn(D) and x = x1 + x2 + x1yx2.
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In some cases we will prove Corollary 1 using induction on n. We write x =

(

x′ b′

c′ d′

)

and y =

(

y′ 0
0 0

)

wth x′, y′ ∈ Mn−1(D), d′ ∈ D. Suppose that the following condition

holds:

(2) x′ = x′
1

+ x′
2

+ x′
1
y′x′

2
with x′i, 1n−1 + x′iy

′ ∈ GLn−1(D).

Then we prove our conclusion as follows.

If d′ = 0, or card(D) 6= 2, then we write d′ = d′
1

+ d′
2

with d′
1
, d′

2
∈ D ∗ . Then

we set x1 =

(

x′
1

b′

0 d′
1

)

, x2 =

(

x′
1

0
c′ d′

2

)

∈ GLn(D) with x = x1 + x2 + x1yx2 and

1 + xiy ∈ GLn(D).

Assume now that d′ 6= 0 and card(D) = 2 hence d′ = 1.

If n−k ≥ 2, then we can be reduced to the case d′ = 0 replacing x and y by x

(

1k 0
0 g

)

and y =

(

1k 0
0 g

)

−1

y with a matrix g ∈ GLn−k(D).

Assume now that d′ = 1, card(D) = 2 and n− k = 1.

If b′ 6= 0, we can be reduced to the case d′ = 0 replacing x and y by

(

1n−1 0
∗ 1

)

x

and y =

(

1n−1 0
∗ 1

)

y

If c′ 6= 0, we can be reduced to the case d′ = 0 replacing x and y by x

(

1n−1 ∗
0 1

)

x

and y = y

(

1n−1 ∗
0 1

)

y.

Assume now that card(D) = 2, n− k = 1, d′ = 1, b′ = 0, c′ = 0.

If x′ 6= 0, then x′−1

1
+ x′−1

2
+ 1n−1 6= 0. So there are a column b and a row c such that

c(x′−1

1
+ x′−1

2
+ 1n−1)b = 1. Now we set u = x′

1
+ 1n−1, v = x′

2
+ 1n−1 ∈ GLn−1(D),

x1 =

(

x′1 ub
c 1 + cx′−1

1
ub

)

, x2 =

(

x′2 b
cv 1 + cvx′−1

2
b

)

∈ GLn(D).

Then x = x1 + x2 + x1yx2 and 1 + xiy ∈ GLn(D).

Assume now that card(D) = 2, n− k = 1, d′ = 1, b′ = 0, c′ = 0, x′ = 0.

If n ≥ 4, let u, u − 1n−2 ∈ GLn−2(D). We set x1 =





u + 1n−2 0 0
0 0 1
0 1 1



 , x2 =





u−1 + 1n−2 0 0
0 0 1
0 1 1



 ∈ GLn(D). Then x = x1 + x2 + x1yx2 and 1 + xiy ∈ GLn(D).

Finally, assume that card(D) = 2, n − k = 1, d′ = 1, b′ = 0, c′ = 0, x′ = 0, n ≤ 3
Since x′

1
, x′

1
+ 1n−1 ∈ GLn−1(D), we conclude that n ≥ 3. So n = 3, k = 2. We set x1 =
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



0 1 0
0 0 1
1 0 0



 , x2 =





0 1 1
0 0 1
1 1 0



 ∈ GL3(D). Then x =





0 0 0
0 0 0
0 0 1



 = x1 + x2 + x1yx2

and 1 + xiy ∈ GL3D).
Thus, we have proved the corollary in Cases (1) and (2). In general, proceeding by

induction on n when n− k ≥ 2 and using Lemma 2 when n− k = 1, we are reduced to the

following four cases (we write x =

(

a b
c d

)

again):

(3) n = 2, k = 1, card(D) =3, and a = 1;
(4) n = 2, k = 1, card(D) =2, and a = b = c = 0;
(5) n = 3, k = 1, and card(D) = 2;
(6) n = 3, k = 2, card(D) = 2, and 1 + a has order 2;

In Case (3), we set x1 =

(

0 1
1 d− bc + b + c + 1

)

, x2 =

(

1 b− 1
c + 1 bc + b− c

)

∈

GL2(D). Then x =

(

1 b
c d

)

= x1 ◦ x2 = x1 + x2 + x1yx2.

In Case (4), we have x =

(

0 0
0 d

)

= x1 ◦ x2 with x1 =

(

0 1
1 d

)

, x2 =

(

0 1
1 1

)

∈

GL2(D), 12 + xiy ∈ GL2(D).

In Case (5), the condition 1 + ay ∈ GL3(D) means a = 0.
Replacing x, xi, y by uxv, uxiv, v−1yu−1 = y respectively with u, v ∈ GL3(D) of the

form

(

1 0
0 ∗

)

, we can assume that:

d2,2 = 0 in the case when b = 0, c = 0;

b =

(

1
1

)

in the case when b 6= 0;

c = (1, 1) in the case when c 6= 0.

When b = 0 and c = 0, we write d =

(

e1 e2

e3 0

)

∈ M2(D). Then

x =





0 0 0
0 e1 e2

0 e3 0



 = x1 ◦ x2 = x1 + x2 + x1yx2

with

x1 =





0 1 0
1 e1 e2

0 e3 1



 , x2 =





0 1 0
1 1 0
0 0 1



 ∈ GL3(D), 1n + xiy ∈ GL3(D).

Here is how we handle the remaining cases:

x =





0 1 1
0 e1 e2

0 e3 e4



 =





0 1 0
1 e1 e2

0 e3 1



 ◦





0 0 1
1 0 1
0 1 e4 + 1



 ;
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x =





0 0 0
1 e1 e2

1 e3 e4



 =





0 1 0
1 e1 e2 + 1
0 e3 1



 ◦





0 1 0
0 1 1
1 0 e4 + 1



 ;

x =





0 1 1
1 e1 e2

1 e3 e4



 =





0 1 0
0 e1 1
1 e3 + 1 e4



 ◦





0 0 1
1 0 e2 + 1
0 1 1



 .

In Case (6), replacing x, xi, y by uxu−1, uxiu
−1, uyu−1 = y respectively with u ∈

GL3(D) of the form

(

∗ 0
0 1

)

, we can assume that a =

(

0 1
0 0

)

.

Replacing x, xi, y by uxv, uxiv, v−1yu−1 = y respectively with u =

(

12 0
∗ 1

)

, v =

(

12 ∗
0 1

)

∈ GL3(D) (which does not change a), we can assume that x =





0 1 0
0 0 e1

e2 0 d



 .

If e2 = 0, we set x1 =





0 1 1
1 1 e1

0 1 0



 , x2 =





1 1 0
1 1 1
1 0 1 + d



 ∈ GL3(D).

If e1 = 0, we set x1 =





1 1 0
1 0 1
1 1 1



 , x2 =





0 0 1
1 0 0
e2 1 d



 ∈ GL3(D).

If e1 = e2 = 1, we set x1 =





1 1 0
1 1 1
0 1 d + 1



 , x2 =





1 1 0
1 0 0
0 1 1



 ∈ GL3(D). QED.

REMARK. All exceptions in Corollary 1 are necessary.

PROPOSITION 1. Let R be an associative ring with 1 such that R/rad(R) is product
of full matrix rings over division rings. Let y ∈ R and assume that y belongs to every ideal
of index 2,3 or 16 in R. Let x ∈ R by such that 1 + xy ∈ R∗ and that x belongs to any
ideal of index two in R. Then there are x1, x2 ∈ R∗ such that 1+xiy ∈ R∗ for i = 1, 2 and
x = x1 ◦ x2 = x1 + x2 + x1yx2.

Proof. Using Corollary 1, we can find the components x′1, x
′

2 of all x1, x2 in every
matrix ring R′ with card(R′) 6= 2, 3, or 16. In the case of card(R′)=2, we set x′

1
= x′

2
= 1.

In the case of card(R′)=3, we set x′1 = x′2 = −x′. In the case of card(R′)=16, we use
Lemma 1.

Then x1, x2 are defined modulo rad(R), x1, x2, 1 + x1y, 1 + x2y ∈ R∗, and x ≡ x1 ◦ x2

modulo rad(R). Now we replace x2 by (−(1+x1y)−1x1)◦x ∈ R∗ and obtain that 1+x2y ∈
R∗ and x = x1 ◦ x2. (Recall that (−(1 + x1y)−1x1) ◦ x1 = 0.) QED.

COROLLARY 2. Under the conditions of Proposition 1, (1+xy)(1+yx)−1 is a product
of two commutators.

Proof. We have
1 + xy = (1 + x1y)(1 + x2y)

and
1 + yx = (1 + yx1)(1 + yx2)
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with x1, x2 ∈ R∗. So

(1 + xiy)(1 + yxi)
−1 = (1 + xiy)x−1

i (1 + xiy)−1xi = [1 + xiy, x−1

i ]

is a commutator for i = 1, 2, hence

(1 + xy)(1 + yx)−1 = (1 + x1y)(1 + x2y)(1 + yx2)
−1(1 + yx1)

−1

= (1 + x1y)[1 + x2y, x−1

2
](1 + yx1)

−1

= [1 + x1y, x−1

1
][(1 + yx1)(1 + x2y)(1 + yx1)

−1, (1 + yx1)x
−1

2
(1 + yx1)

−1]

is a product of two commutators.

COROLLARY 3. Let R be an associative ring with 1 such that R/rad(R) is product of
full matrix rings over division rings. Let x, y ∈ R and 1 + xy ∈ R∗. Assume that y belongs
to every ideal of index 16 in R and that both x and y belong to every ideal of index 2 in
R. Then (1 + xy)(1 + yx)−1 is a product of four commutators.

Proof. If R has no ideals of index 3 or y belongs to all such ideals J of index 3 in R,
then (1 + xy)(1 + yx)−1 is a product of two commutators by Corollary 2.

Otherwise, we find x1, x2 ∈ R∗ such that 1+xiy ∈ R∗ and x′ = x′
1
◦x′

2
in every factor

matrix ring R′ except for R′ such that card(R′) = 3 and x′y′ 6= 0. (If card(R′) = 16, we
use Lemma 1.) In the exceptional case, x′

1
= x′

2
= x′ = y′ = ±1 and x′

1
◦ x′

2
= 0.

We set x̃ = x1 ◦ x2 ◦ x. Then 1 + x̃2 ∈ R∗. We set ỹ = y + x̃ + y + yx̃2 ∈ R with
1 + x̃ỹ ∈ R∗. Then ỹ belongs to every ideal J of index 2 or 3 in R. By Corollary 2,

(1 + x̃ỹ)(1 + ỹx̃)−1 = (1 + x̃y)(1 + x̃2)(1 + x̃2)−1(1 + yx̃)−1

= (1 + x̃y)(1 + yx̃)−1 = (1 + x1y)(1 + x2y)(1 + xy)((1 + yx1)(1 + yx2)(1 + yx))−1

is a product of two commutators, hence (1+xy)(1+yx)−1 is a product of four commutators.
QED.

PROPOSITION 2. Under the conditions of Theorem 2, let x, y ∈ R and 1 + xy ∈ R∗.
Then (1 + xy)(1 + yx)−1 is a product of five commutators.

Proof. If R has no ideals of index 2 or there is (exactly one) such an ideal J2 and
x, y ∈ J2, then (1 + xy)(1 + yx)−1 is a product of four commutators by Corollary 3.

If y /∈ J2, then x ∈ J2 (since 1 + xy ∈ R∗). By Lemma 1, there is y0 ∈ R∗ such that
1 + xy0 ∈ R∗ (i.e., x + y−1

0
∈ R∗. Set ỹ = y + y0 + yxx0. By Corollary 3,

(1 + xỹ)(1 + ỹx)−1 = (1 + xy)(1 + xy0)(1 + y0x)−1(1 + yx)−1

is a product of four commutators, hence (1+xy)(1+yx)−1 is a product of five commutators
(because (1 + xy0)(1 + y0x)−1 is a commutator).

If x /∈ J2, then y ∈ J2. By Lemma 1, there is x0 ∈ R∗ such that 1 + x0y ∈ R∗. Set
x̃ = x + x0 + xyx0. By Corollary 3,

(1 + x̃y)(1 + yx̃)−1 = ((1 + yx̃)(1 + x̃y)−1)−1 = (1 + xy)(1 + x0y)(1 + yx0)
−1(1 + yx)−1

9



is a product of four commutators, hence (1+xy)(1+yx)−1 is a product of five commutators.
QED.

Now we can finish our proof of Theorem 2. If R be an associative ring with 1 such
that R/rad(R) is product of full matrix rings over division rings, then by [2, Theorem 3.6],
the kernel of the Whitehead determinant R∗ = GL1(R) → K1(R) is the subgroup Ẽ of R∗

generated by all (1 + xy)(1 + yx)−1 with x, y ∈ R and 1 + xy ∈ R∗. So Theorem 2 follows
from Proposition 2.
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